IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2020i1p139-d469944.html
   My bibliography  Save this article

A Novel Feature Set for Low-Voltage Consumers, Based on the Temporal Dependence of Consumption and Peak Demands

Author

Listed:
  • Robbert Claeys

    (EELab/Lemcko, Department of Electromechanical, Systems and Metal Engineering, Ghent University, 8500 Kortrijk, Belgium)

  • Hakim Azaioud

    (EELab/Lemcko, Department of Electromechanical, Systems and Metal Engineering, Ghent University, 8500 Kortrijk, Belgium)

  • Rémy Cleenwerck

    (EELab/Lemcko, Department of Electromechanical, Systems and Metal Engineering, Ghent University, 8500 Kortrijk, Belgium)

  • Jos Knockaert

    (EELab/Lemcko, Department of Electromechanical, Systems and Metal Engineering, Ghent University, 8500 Kortrijk, Belgium)

  • Jan Desmet

    (EELab/Lemcko, Department of Electromechanical, Systems and Metal Engineering, Ghent University, 8500 Kortrijk, Belgium)

Abstract

This paper proposes a novel feature construction methodology aiming at both clustering yearly load profiles of low-voltage consumers, as well as investigating the stochastic nature of their peak demands. These load profiles describe the electricity consumption over a one-year period, allowing the study of seasonal dependence. The clustering of load curves has been extensively studied in literature, where clustering of daily or weekly load curves based on temporal features has received the most research attention. The proposed feature construction aims at generating a new set of variables that can be used in machine learning applications, stepping away from traditional, high dimensional, chronological feature sets. This paper presents a novel feature set based on two types of features: respectively the consumption time window on a daily and weekly basis, and the time of occurrence of peak demands. An analytic expression for the load duration curve is validated and leveraged in order to define the the region that has to be considered as peak demand region. The clustering results using the proposed set of features on a dataset of measured Flemish consumers at 15-min resolution are evaluated and interpreted, where special attention is given to the stochastic nature of the peak demands.

Suggested Citation

  • Robbert Claeys & Hakim Azaioud & Rémy Cleenwerck & Jos Knockaert & Jan Desmet, 2020. "A Novel Feature Set for Low-Voltage Consumers, Based on the Temporal Dependence of Consumption and Peak Demands," Energies, MDPI, vol. 14(1), pages 1-24, December.
  • Handle: RePEc:gam:jeners:v:14:y:2020:i:1:p:139-:d:469944
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/1/139/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/1/139/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexander Martin Tureczek & Per Sieverts Nielsen, 2017. "Structured Literature Review of Electricity Consumption Classification Using Smart Meter Data," Energies, MDPI, vol. 10(5), pages 1-19, April.
    2. McLoughlin, Fintan & Duffy, Aidan & Conlon, Michael, 2015. "A clustering approach to domestic electricity load profile characterisation using smart metering data," Applied Energy, Elsevier, vol. 141(C), pages 190-199.
    3. Rhodes, Joshua D. & Cole, Wesley J. & Upshaw, Charles R. & Edgar, Thomas F. & Webber, Michael E., 2014. "Clustering analysis of residential electricity demand profiles," Applied Energy, Elsevier, vol. 135(C), pages 461-471.
    4. Motlagh, Omid & Paevere, Phillip & Hong, Tang Sai & Grozev, George, 2015. "Analysis of household electricity consumption behaviours: Impact of domestic electricity generation," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 165-178.
    5. Jimyung Kang & Jee-Hyong Lee, 2015. "Electricity Customer Clustering Following Experts’ Principle for Demand Response Applications," Energies, MDPI, vol. 8(10), pages 1-24, October.
    6. Chicco, Gianfranco, 2012. "Overview and performance assessment of the clustering methods for electrical load pattern grouping," Energy, Elsevier, vol. 42(1), pages 68-80.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michał Jasiński & Tomasz Sikorski & Dominika Kaczorowska & Jacek Rezmer & Vishnu Suresh & Zbigniew Leonowicz & Paweł Kostyła & Jarosław Szymańda & Przemysław Janik & Jacek Bieńkowski & Przemysław Prus, 2021. "A Case Study on a Hierarchical Clustering Application in a Virtual Power Plant: Detection of Specific Working Conditions from Power Quality Data," Energies, MDPI, vol. 14(4), pages 1-13, February.
    2. Michał Jasiński & Tomasz Sikorski & Dominika Kaczorowska & Jacek Rezmer & Vishnu Suresh & Zbigniew Leonowicz & Paweł Kostyła & Jarosław Szymańda & Przemysław Janik & Jacek Bieńkowski & Przemysław Prus, 2021. "A Case Study on Data Mining Application in a Virtual Power Plant: Cluster Analysis of Power Quality Measurements," Energies, MDPI, vol. 14(4), pages 1-14, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander Tureczek & Per Sieverts Nielsen & Henrik Madsen, 2018. "Electricity Consumption Clustering Using Smart Meter Data," Energies, MDPI, vol. 11(4), pages 1-18, April.
    2. Tang, Rui & Yildiz, Baran & Leong, Philip H.W. & Vassallo, Anthony & Dore, Jonathon, 2019. "Residential battery sizing model using net meter energy data clustering," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    3. Gouveia, João Pedro & Seixas, Júlia & Mestre, Ana, 2017. "Daily electricity consumption profiles from smart meters - Proxies of behavior for space heating and cooling," Energy, Elsevier, vol. 141(C), pages 108-122.
    4. Yang, Ting & Ren, Minglun & Zhou, Kaile, 2018. "Identifying household electricity consumption patterns: A case study of Kunshan, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 861-868.
    5. Rongheng Lin & Budan Wu & Yun Su, 2018. "An Adaptive Weighted Pearson Similarity Measurement Method for Load Curve Clustering," Energies, MDPI, vol. 11(9), pages 1-17, September.
    6. Russo, Marianna & Bertsch, Valentin, 2020. "A looming revolution: Implications of self-generation for the risk exposure of retailers," Energy Economics, Elsevier, vol. 92(C).
    7. Markovič, Rene & Gosak, Marko & Grubelnik, Vladimir & Marhl, Marko & Virtič, Peter, 2019. "Data-driven classification of residential energy consumption patterns by means of functional connectivity networks," Applied Energy, Elsevier, vol. 242(C), pages 506-515.
    8. Zhang, Xiaohai & Ramírez-Mendiola, José Luis & Li, Mingtao & Guo, Liejin, 2022. "Electricity consumption pattern analysis beyond traditional clustering methods: A novel self-adapting semi-supervised clustering method and application case study," Applied Energy, Elsevier, vol. 308(C).
    9. Zhou, Kaile & Yang, Changhui & Shen, Jianxin, 2017. "Discovering residential electricity consumption patterns through smart-meter data mining: A case study from China," Utilities Policy, Elsevier, vol. 44(C), pages 73-84.
    10. Khan, Waqas & Liao, Juo Yu & Walker, Shalika & Zeiler, Wim, 2022. "Impact assessment of varied data granularities from commercial buildings on exploration and learning mechanism," Applied Energy, Elsevier, vol. 319(C).
    11. Rajabi, Amin & Eskandari, Mohsen & Ghadi, Mojtaba Jabbari & Li, Li & Zhang, Jiangfeng & Siano, Pierluigi, 2020. "A comparative study of clustering techniques for electrical load pattern segmentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    12. Li, Wenqiang & Gong, Guangcai & Fan, Houhua & Peng, Pei & Chun, Liang & Fang, Xi, 2021. "A clustering-based approach for “cross-scale” load prediction on building level in HVAC systems," Applied Energy, Elsevier, vol. 282(PB).
    13. Roberts, Mike B. & Haghdadi, Navid & Bruce, Anna & MacGill, Iain, 2019. "Characterisation of Australian apartment electricity demand and its implications for low-carbon cities," Energy, Elsevier, vol. 180(C), pages 242-257.
    14. Motlagh, Omid & Berry, Adam & O'Neil, Lachlan, 2019. "Clustering of residential electricity customers using load time series," Applied Energy, Elsevier, vol. 237(C), pages 11-24.
    15. Trotta, Gianluca, 2020. "An empirical analysis of domestic electricity load profiles: Who consumes how much and when?," Applied Energy, Elsevier, vol. 275(C).
    16. Gianluca Trotta & Kirsten Gram-Hanssen & Pernille Lykke Jørgensen, 2020. "Heterogeneity of Electricity Consumption Patterns in Vulnerable Households," Energies, MDPI, vol. 13(18), pages 1-17, September.
    17. Kwonsik Song & Kyle Anderson & SangHyun Lee & Kaitlin T. Raimi & P. Sol Hart, 2020. "Non-Invasive Behavioral Reference Group Categorization Considering Temporal Granularity and Aggregation Level of Energy Use Data," Energies, MDPI, vol. 13(14), pages 1-21, July.
    18. Yu, Xinran & Ergan, Semiha & Dedemen, Gokmen, 2019. "A data-driven approach to extract operational signatures of HVAC systems and analyze impact on electricity consumption," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    19. Qiu, Dawei & Wang, Yi & Wang, Junkai & Jiang, Chuanwen & Strbac, Goran, 2023. "Personalized retail pricing design for smart metering consumers in electricity market," Applied Energy, Elsevier, vol. 348(C).
    20. Song, Kwonsik & Anderson, Kyle & Lee, SangHyun, 2020. "An energy-cyber-physical system for personalized normative messaging interventions: Identification and classification of behavioral reference groups," Applied Energy, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2020:i:1:p:139-:d:469944. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.