IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i7p1653-d340607.html
   My bibliography  Save this article

Numerical Investigation of the Effect of Nanoparticle Diameter and Sphericity on the Thermal Performance of Geothermal Heat Exchanger Using Nanofluid as Heat Transfer Fluid

Author

Listed:
  • Ruiqing Du

    (National Centre for International Research of Low-carbon and Green Buildings, Ministry of Science & Technology, Chongqing University, Chongqing 400045, China
    Joint International Research Laboratory of Green Buildings and Built Environments, Ministry of Education, Chongqing University, Chongqing 400045, China)

  • Dandan Jiang

    (National Centre for International Research of Low-carbon and Green Buildings, Ministry of Science & Technology, Chongqing University, Chongqing 400045, China
    Joint International Research Laboratory of Green Buildings and Built Environments, Ministry of Education, Chongqing University, Chongqing 400045, China)

  • Yong Wang

    (National Centre for International Research of Low-carbon and Green Buildings, Ministry of Science & Technology, Chongqing University, Chongqing 400045, China
    Joint International Research Laboratory of Green Buildings and Built Environments, Ministry of Education, Chongqing University, Chongqing 400045, China)

Abstract

The geothermal heat exchanger system is one of the most energy-efficient and environmentally friendly building service systems. In the present study, CuO/water nanofluid was used as the heat transfer fluid to enhance the energy efficiency of the geothermal heat exchangers. A three-dimensional numerical model was employed to investigate the effect of nanoparticle diameter and sphericity on the thermal performance of the geothermal heat exchanger, and it was well validated against the experimental results of nanofluids in the geothermal heat exchangers. The numerical results showed that nanoparticles with a diameter of 5 nm and 50 nm were not recommended for the nanofluids used in the geothermal heat exchangers due to the performance efficiency coefficient lower than 1, and the optimum diameter was 40 nm, which had the highest performance efficiency coefficient (1.004875). Moreover, the spherical particle-based nanofluid was characterized by the 8.55% higher energy efficiency, in comparison to rod-shaped particle-based nanofluid. Therefore, the application of nanofluid in the geothermal heat exchanger can enhance heat transfer, and the proposed optimum particle diameter and sphericity could contribute to higher energy efficiency.

Suggested Citation

  • Ruiqing Du & Dandan Jiang & Yong Wang, 2020. "Numerical Investigation of the Effect of Nanoparticle Diameter and Sphericity on the Thermal Performance of Geothermal Heat Exchanger Using Nanofluid as Heat Transfer Fluid," Energies, MDPI, vol. 13(7), pages 1-18, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1653-:d:340607
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/7/1653/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/7/1653/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Han, Chanjuan & Yu, Xiong (Bill), 2016. "Sensitivity analysis of a vertical geothermal heat pump system," Applied Energy, Elsevier, vol. 170(C), pages 148-160.
    2. Faizal, Mohammed & Bouazza, Abdelmalek & Singh, Rao M., 2016. "Heat transfer enhancement of geothermal energy piles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 16-33.
    3. Kong, Minsuk & Alvarado, Jorge L. & Thies, Curt & Morefield, Sean & Marsh, Charles P., 2017. "Field evaluation of microencapsulated phase change material slurry in ground source heat pump systems," Energy, Elsevier, vol. 122(C), pages 691-700.
    4. Li, Wenxin & Li, Xiangdong & Peng, Yuanling & Wang, Yong & Tu, Jiyuan, 2020. "Experimental and numerical studies on the thermal performance of ground heat exchangers in a layered subsurface with groundwater," Renewable Energy, Elsevier, vol. 147(P1), pages 620-629.
    5. Alsarraf, Jalal & Moradikazerouni, Alireza & Shahsavar, Amin & Afrand, Masoud & Salehipour, Hamzeh & Tran, Minh Duc, 2019. "Hydrothermal analysis of turbulent boehmite alumina nanofluid flow with different nanoparticle shapes in a minichannel heat exchanger using two-phase mixture model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 275-288.
    6. Al-Rashed, Abdullah A.A.A. & Ranjbarzadeh, Ramin & Aghakhani, Saeed & Soltanimehr, Mehdi & Afrand, Masoud & Nguyen, Truong Khang, 2019. "Entropy generation of boehmite alumina nanofluid flow through a minichannel heat exchanger considering nanoparticle shape effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 724-736.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gianpiero Colangelo & Brenda Raho & Marco Milanese & Arturo de Risi, 2021. "Numerical Evaluation of a HVAC System Based on a High-Performance Heat Transfer Fluid," Energies, MDPI, vol. 14(11), pages 1-18, June.
    2. Marco Milanese & Francesco Micali & Gianpiero Colangelo & Arturo de Risi, 2022. "Experimental Evaluation of a Full-Scale HVAC System Working with Nanofluid," Energies, MDPI, vol. 15(8), pages 1-14, April.
    3. Hossein Javadi & Javier F. Urchueguia & Seyed Soheil Mousavi Ajarostaghi & Borja Badenes, 2021. "Impact of Employing Hybrid Nanofluids as Heat Carrier Fluid on the Thermal Performance of a Borehole Heat Exchanger," Energies, MDPI, vol. 14(10), pages 1-26, May.
    4. Luka Boban & Dino Miše & Stjepan Herceg & Vladimir Soldo, 2021. "Application and Design Aspects of Ground Heat Exchangers," Energies, MDPI, vol. 14(8), pages 1-31, April.
    5. Abdelazim Abbas Ahmed & Mohsen Assadi & Adib Kalantar & Tomasz Sliwa & Aneta Sapińska-Śliwa, 2022. "A Critical Review on the Use of Shallow Geothermal Energy Systems for Heating and Cooling Purposes," Energies, MDPI, vol. 15(12), pages 1-22, June.
    6. Soltani, M. & Moradi Kashkooli, Farshad & Alian Fini, Mehdi & Gharapetian, Derrick & Nathwani, Jatin & Dusseault, Maurice B., 2022. "A review of nanotechnology fluid applications in geothermal energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Yulin & Shahsavar, Amin & Moradi, Iman & Rostami, Sara & Moradikazerouni, Alireza & Yarmand, Hooman & Zulkifli, Nurin Wahidah Binti Mohd, 2021. "Using finite volume method for simulating the natural convective heat transfer of nano-fluid flow inside an inclined enclosure with conductive walls in the presence of a constant temperature heat sour," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    2. Moghadam, Iman Panahi & Afrand, Masoud & Hamad, Samir M. & Barzinjy, Azeez A. & Talebizadehsardari, Pouyan, 2020. "Curve-fitting on experimental data for predicting the thermal-conductivity of a new generated hybrid nanofluid of graphene oxide-titanium oxide/water," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
    3. Chen, Zhixiong & Ashkezari, Abbas Zarenezhad & Tlili, Iskander, 2020. "Applying artificial neural network and curve fitting method to predict the viscosity of SAE50/MWCNTs-TiO2 hybrid nanolubricant," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    4. Luka Boban & Dino Miše & Stjepan Herceg & Vladimir Soldo, 2021. "Application and Design Aspects of Ground Heat Exchangers," Energies, MDPI, vol. 14(8), pages 1-31, April.
    5. Zeeshan & Attaullah & N. Ameer Ahammad & Nehad Ali Shah & Jae Dong Chung, 2023. "A Numerical Framework for Entropy Generation Using Second-Order Nanofluid Thin Film Flow over an Expanding Sheet: Error Estimation and Stability Analysis," Mathematics, MDPI, vol. 11(5), pages 1-26, February.
    6. Shi, Yu & Song, Xianzhi & Wang, Gaosheng & McLennan, John & Forbes, Bryan & Li, Xiaojiang & Li, Jiacheng, 2019. "Study on wellbore fluid flow and heat transfer of a multilateral-well CO2 enhanced geothermal system," Applied Energy, Elsevier, vol. 249(C), pages 14-27.
    7. Kayaci, Nurullah, 2020. "Energy and exergy analysis and thermo-economic optimization of the ground source heat pump integrated with radiant wall panel and fan-coil unit with floor heating or radiator," Renewable Energy, Elsevier, vol. 160(C), pages 333-349.
    8. Andrea Ferrantelli & Jevgeni Fadejev & Jarek Kurnitski, 2019. "Energy Pile Field Simulation in Large Buildings: Validation of Surface Boundary Assumptions," Energies, MDPI, vol. 12(5), pages 1-20, February.
    9. Linlin Zhang & Zhonghua Shi & Tianhao Yuan, 2020. "Study on the Coupled Heat Transfer Model Based on Groundwater Advection and Axial Heat Conduction for the Double U-Tube Vertical Borehole Heat Exchanger," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
    10. Xiao-Hui Sun & Hongbin Yan & Mehrdad Massoudi & Zhi-Hua Chen & Wei-Tao Wu, 2018. "Numerical Simulation of Nanofluid Suspensions in a Geothermal Heat Exchanger," Energies, MDPI, vol. 11(4), pages 1-18, April.
    11. Zhang, Zheng & Xiong, Youming & Gao, Yun & Liu, Liming & Wang, Menghao & Peng, Geng, 2018. "Wellbore temperature distribution during circulation stage when well-kick occurs in a continuous formation from the bottom-hole," Energy, Elsevier, vol. 164(C), pages 964-977.
    12. Falcone, Gioia & Liu, Xiaolei & Okech, Roy Radido & Seyidov, Ferid & Teodoriu, Catalin, 2018. "Assessment of deep geothermal energy exploitation methods: The need for novel single-well solutions," Energy, Elsevier, vol. 160(C), pages 54-63.
    13. Ma, Qijie & Wang, Peijun & Fan, Jianhua & Klar, Assaf, 2022. "Underground solar energy storage via energy piles: An experimental study," Applied Energy, Elsevier, vol. 306(PB).
    14. Anifantis, Alexandros Sotirios & Colantoni, Andrea & Pascuzzi, Simone, 2017. "Thermal energy assessment of a small scale photovoltaic, hydrogen and geothermal stand-alone system for greenhouse heating," Renewable Energy, Elsevier, vol. 103(C), pages 115-127.
    15. Xu, Bin & Gan, Wen-tao & Wang, Yang-liang & Chen, Xing-ni & Fei, Yue & Pei, Gang, 2023. "Thermal performance of a novel Trombe wall integrated with direct absorption solar collector based on phase change slurry in winter," Renewable Energy, Elsevier, vol. 213(C), pages 246-258.
    16. Krzysztof Dutkowski & Marcin Kruzel, 2023. "The State of the Art on the Flow Characteristic of an Encapsulated Phase-Change Material Slurry," Energies, MDPI, vol. 16(19), pages 1-27, October.
    17. Yelnar Yerdesh & Tangnur Amanzholov & Abdurashid Aliuly & Abzal Seitov & Amankeldy Toleukhanov & Mohanraj Murugesan & Olivier Botella & Michel Feidt & Hua Sheng Wang & Alexandr Tsoy & Yerzhan Belyayev, 2022. "Experimental and Theoretical Investigations of a Ground Source Heat Pump System for Water and Space Heating Applications in Kazakhstan," Energies, MDPI, vol. 15(22), pages 1-25, November.
    18. Song, Xianzhi & Shi, Yu & Li, Gensheng & Yang, Ruiyue & Wang, Gaosheng & Zheng, Rui & Li, Jiacheng & Lyu, Zehao, 2018. "Numerical simulation of heat extraction performance in enhanced geothermal system with multilateral wells," Applied Energy, Elsevier, vol. 218(C), pages 325-337.
    19. Han, Chanjuan & Ellett, Kevin M. & Naylor, Shawn & Yu, Xiong (Bill), 2017. "Influence of local geological data on the performance of horizontal ground-coupled heat pump system integrated with building thermal loads," Renewable Energy, Elsevier, vol. 113(C), pages 1046-1055.
    20. Shafee, Ahmad & Arabkoohsar, A. & Sheikholeslami, M. & Jafaryar, M. & Ayani, M. & Nguyen-Thoi, Trung & Basha, D. Baba & Tlili, I. & Li, Zhixiong, 2020. "Numerical simulation for turbulent flow in a tube with combined swirl flow device considering nanofluid exergy loss," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1653-:d:340607. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.