IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i5p1136-d327699.html
   My bibliography  Save this article

How Much Energy Efficient are Renewable Energy Sources Cooperatives’ Initiatives?

Author

Listed:
  • Nikolaos Sifakis

    (Renewable and Sustainable Energy Systems Lab, School of Environmental Engineering, Technical University of Crete, Kounoupidiana Campus, 73100 Chania, Greece)

  • Tryfon Daras

    (School of Environmental Engineering, Technical University of Crete, Kounoupidiana Campus, 73100 Chania, Greece)

  • Theocharis Tsoutsos

    (Renewable and Sustainable Energy Systems Lab, School of Environmental Engineering, Technical University of Crete, Kounoupidiana Campus, 73100 Chania, Greece)

Abstract

In this paper is provided a systematic, in-depth, behavioral analysis of renewable energy sources cooperatives’ members. The analysis proved that in, on hand, there was a noticeable difference in the portion of affection of each proposed intervention on the actual energy consumption, which may be to even ten times more in some cases, and on the other hand, the difference in energy consumption between the analyzed groups was noticeable as well. So, implementing energy efficiency interventions of various types, such as technical support, special tariffs, energy generation schemes, and smart meters, seems to lead to substantial energy reductions to even more than 10%, cumulatively, and reduces the environmental footprint. Additionally, the majority of energy efficiency interventions applied by the renewable energy sources cooperatives are proved to be effective in achieving their primary goal, sensitizing members, and leading them to a more efficient energy consumption behavior (“greener”). The results of the analysis showed that each proposed intervention had played a different but nonetheless significant role in the diminishing of the energy consumption of the members and that there was a noticeable difference in energy consumption between the analyzed groups. The results of the analysis demonstrated more than 22 GWh totally in green consumption, and almost 4500 tons of CO 2 saved.

Suggested Citation

  • Nikolaos Sifakis & Tryfon Daras & Theocharis Tsoutsos, 2020. "How Much Energy Efficient are Renewable Energy Sources Cooperatives’ Initiatives?," Energies, MDPI, vol. 13(5), pages 1-22, March.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1136-:d:327699
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/5/1136/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/5/1136/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stefano Moroni & Valentina Antoniucci & Adriano Bisello, 2019. "Local Energy Communities and Distributed Generation: Contrasting Perspectives, and Inevitable Policy Trade-Offs, beyond the Apparent Global Consensus," Sustainability, MDPI, vol. 11(12), pages 1-16, June.
    2. Edyta Ropuszyńska-Surma & Magdalena Węglarz, 2018. "Profiling End User of Renewable Energy Sources among Residential Consumers in Poland," Sustainability, MDPI, vol. 10(12), pages 1-21, November.
    3. Hentschel, Moritz & Ketter, Wolfgang & Collins, John, 2018. "Renewable energy cooperatives: Facilitating the energy transition at the Port of Rotterdam," Energy Policy, Elsevier, vol. 121(C), pages 61-69.
    4. Heras-Saizarbitoria, Iñaki & Sáez, Lucía & Allur, Erlantz & Morandeira, Jon, 2018. "The emergence of renewable energy cooperatives in Spain: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1036-1043.
    5. Theano S. Terkenli & Tryfon Daras & Efpraxia-Aithra Maria, 2019. "Landscape Notions among Greek Engineering Students: Exploring Landscape Perceptions, Knowledge and Participation," Land, MDPI, vol. 8(5), pages 1-19, May.
    6. Batinge, Benjamin & Musango, Josephine Kaviti & Brent, Alan C., 2019. "Sustainable energy transition framework for unmet electricity markets," Energy Policy, Elsevier, vol. 129(C), pages 1090-1099.
    7. Lehtonen, Olli & Okkonen, Lasse, 2019. "Energy cost reduction creates additional socioeconomic benefits– The case of Eno Energy Cooperative, Finland," Energy Policy, Elsevier, vol. 129(C), pages 352-359.
    8. Bauwens, Thomas, 2019. "Analyzing the determinants of the size of investments by community renewable energy members: Findings and policy implications from Flanders," Energy Policy, Elsevier, vol. 129(C), pages 841-852.
    9. Antonia Proka & Derk Loorbach & Matthijs Hisschemöller, 2018. "Leading from the Niche: Insights from a Strategic Dialogue of Renewable Energy Cooperatives in The Netherlands," Sustainability, MDPI, vol. 10(11), pages 1-21, November.
    10. Nikolaos Sifakis & Nikolaos Savvakis & Tryfon Daras & Theocharis Tsoutsos, 2019. "Analysis of the Energy Consumption Behavior of European RES Cooperative Members," Energies, MDPI, vol. 12(6), pages 1-19, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Frans H. J. M. Coenen & Thomas Hoppe, 2022. "Renewable Energy Communities as a New Actor in Home Energy Savings," Urban Planning, Cogitatio Press, vol. 7(2), pages 108-122.
    2. Dumiter Florin Cornel & Turcaș Florin Marius & Boiţă Marius, 2023. "Oil Shock Impact Upon Energy Companies Investment Portfolios. Trends and Evolutions in the Energy Consumption Sector," Studia Universitatis „Vasile Goldis” Arad – Economics Series, Sciendo, vol. 33(1), pages 1-27, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehmet Efe Biresselioglu & Siyami Alp Limoncuoglu & Muhittin Hakan Demir & Johannes Reichl & Katrin Burgstaller & Alessandro Sciullo & Edoardo Ferrero, 2021. "Legal Provisions and Market Conditions for Energy Communities in Austria, Germany, Greece, Italy, Spain, and Turkey: A Comparative Assessment," Sustainability, MDPI, vol. 13(20), pages 1-25, October.
    2. Lode, M.L. & te Boveldt, G. & Coosemans, T. & Ramirez Camargo, L., 2022. "A transition perspective on Energy Communities: A systematic literature review and research agenda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    3. Nikolaos Sifakis & Nikolaos Savvakis & Tryfon Daras & Theocharis Tsoutsos, 2019. "Analysis of the Energy Consumption Behavior of European RES Cooperative Members," Energies, MDPI, vol. 12(6), pages 1-19, March.
    4. Anne-Lorene Vernay & Carine Sebi, 2020. "Energy communities and their ecosystems A comparison of France and the Netherlands," Post-Print hal-02987790, HAL.
    5. Fuentes González, Fabián & Sauma, Enzo & van der Weijde, Adriaan Hendrik, 2022. "Community energy projects in the context of generation and transmission expansion planning," Energy Economics, Elsevier, vol. 108(C).
    6. Fuentes González, Fabián & van der Weijde, Adriaan Hendrik & Sauma, Enzo, 2020. "The promotion of community energy projects in Chile and Scotland: An economic approach using biform games," Energy Economics, Elsevier, vol. 86(C).
    7. Mukhopadhyay, Bineeta & Das, Debapriya, 2020. "Multi-objective dynamic and static reconfiguration with optimized allocation of PV-DG and battery energy storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    8. Vernay, Anne-Lorène & Sebi, Carine, 2020. "Energy communities and their ecosystems: A comparison of France and the Netherlands," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    9. Sebi, Carine & Vernay, Anne-Lorène, 2020. "Community renewable energy in France: The state of development and the way forward," Energy Policy, Elsevier, vol. 147(C).
    10. Anne-Lorene Vernay & Carine Sebi, 2020. "Energy communities and their ecosystems A comparison of France and the Netherlands," Grenoble Ecole de Management (Post-Print) hal-02987790, HAL.
    11. Viktor Bukovszki & Ábel Magyari & Marina Kristina Braun & Kitti Párdi & András Reith, 2020. "Energy Modelling as a Trigger for Energy Communities: A Joint Socio-Technical Perspective," Energies, MDPI, vol. 13(9), pages 1-44, May.
    12. Quintano, Claudio & Mazzocchi, Paolo & Rocca, Antonella, 2021. "Evaluation of the eco-efficiency of territorial districts with seaport economic activities," Utilities Policy, Elsevier, vol. 71(C).
    13. Olatz Azurza-Zubizarreta & Izaro Basurko-PerezdeArenaza & Eñaut Zelarain & Estitxu Villamor & Ortzi Akizu-Gardoki & Unai Villena-Camarero & Alvaro Campos-Celador & Iñaki Barcena-Hinojal, 2021. "Urban Energy Transitions in Europe, towards Low-Socio-Environmental Impact Cities," Sustainability, MDPI, vol. 13(21), pages 1-29, October.
    14. Kirchhoff, Hannes & Strunz, Kai, 2019. "Key drivers for successful development of peer-to-peer microgrids for swarm electrification," Applied Energy, Elsevier, vol. 244(C), pages 46-62.
    15. Pons-Seres de Brauwer, C. & Cohen, J.J., 2020. "Analysing the potential of citizen-financed community renewable energy to drive Europe's low-carbon energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    16. Bourcet, Clémence & Bovari, Emmanuel, 2020. "Exploring citizens' decision to crowdfund renewable energy projects: Quantitative evidence from France," Energy Economics, Elsevier, vol. 88(C).
    17. Fouladvand, Javanshir & Aranguren Rojas, Maria & Hoppe, Thomas & Ghorbani, Amineh, 2022. "Simulating thermal energy community formation: Institutional enablers outplaying technological choice," Applied Energy, Elsevier, vol. 306(PA).
    18. Sebastian Schär & Jutta Geldermann, 2021. "Adopting Multiactor Multicriteria Analysis for the Evaluation of Energy Scenarios," Sustainability, MDPI, vol. 13(5), pages 1-19, March.
    19. Julia Maria Wittmayer & Tessa de Geus & Bonno Pel & F. Avelino & Sabine Hielscher & Thomas Hoppe & Marie Susan Mühlemeier & Agata Stasik & Sem Oxenaar & Karoline K.S. Rogge & Vivian Visser & Esther Ma, 2020. "Beyond instrumentalism: Broadening the understanding of social innovation in socio-technical energy systems," ULB Institutional Repository 2013/312323, ULB -- Universite Libre de Bruxelles.
    20. Esther C. van der Waal & Alexandra M. Das & Tineke van der Schoor, 2020. "Participatory Experimentation with Energy Law: Digging in a ‘Regulatory Sandbox’ for Local Energy Initiatives in the Netherlands," Energies, MDPI, vol. 13(2), pages 1-21, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1136-:d:327699. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.