IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i21p5623-d435662.html
   My bibliography  Save this article

Analysis of Wind Turbine Aging through Operation Curves

Author

Listed:
  • Davide Astolfi

    (Department of Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy)

  • Raymond Byrne

    (Centre for Renewables and Energy, Dundalk Institute of Technology, Dublin Road, A91 V5XR Louth, Ireland)

  • Francesco Castellani

    (Department of Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy)

Abstract

The worsening with age of technical systems performance is a matter of fact which is particularly timely to analyze for horizontal-axis wind turbines because they constitute a mature technology. On these grounds, the present study deals with the assessment of wind turbine performance decline with age. The selected test case is a Vestas V52 wind turbine, installed in 2005 at the Dundalk Institute of Technology campus in Ireland. Operation data from 2008 to 2019 have been used for this study. The general idea is analyzing the appropriate operation curves for each working region of the wind turbine: in Region 2 (wind speed between 5 and 9 m/s), the generator speed–power curve is studied, because the wind turbine operates at fixed pitch. In Region 2 1 2 (wind speed between 9 and 13 m/s), the generator speed is rated and the pitch control is relevant: therefore, the pitch angle–power curve is analyzed. Using a support vector regression for the operation curves of interest, it is observed that in Region 2, a progressive degradation occurs as regards the power extracted for given generator speed, and after ten years (from 2008 to 2018), the average production has diminished of the order of 8%. In Region 2 1 2 , the performance decline with age is less regular and, after ten years of operation, the performance has diminished averagely of the 1.3%. The gearbox of the test case wind turbine was substituted with a brand new one at the end of 2018, and it results that the performance in Region 2 1 2 has considerably improved after the gearbox replacement (+3% in 2019 with respect to 2018, +1.7% with respect to 2008), while in Region 2, an improvement is observed (+1.9% in 2019 with respect to 2018) which does not compensate the ten-year period decline (−6.5% in 2019 with respect to 2008). Therefore, the lesson is that for the test case wind turbine, the generator aging impacts remarkably on the power production in Region 2, while in Region 2 1 2 , the impact of the gearbox aging dominates over the generator aging; for this reason, wind turbine refurbishment or component replacement should be carefully considered on the grounds of the wind intensity distribution onsite.

Suggested Citation

  • Davide Astolfi & Raymond Byrne & Francesco Castellani, 2020. "Analysis of Wind Turbine Aging through Operation Curves," Energies, MDPI, vol. 13(21), pages 1-21, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5623-:d:435662
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/21/5623/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/21/5623/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ravi Pandit & David Infield, 2018. "Gaussian Process Operational Curves for Wind Turbine Condition Monitoring," Energies, MDPI, vol. 11(7), pages 1-20, June.
    2. Artigao, Estefania & Martín-Martínez, Sergio & Honrubia-Escribano, Andrés & Gómez-Lázaro, Emilio, 2018. "Wind turbine reliability: A comprehensive review towards effective condition monitoring development," Applied Energy, Elsevier, vol. 228(C), pages 1569-1583.
    3. Davide Astolfi & Francesco Castellani & Matteo Becchetti & Andrea Lombardi & Ludovico Terzi, 2020. "Wind Turbine Systematic Yaw Error: Operation Data Analysis Techniques for Detecting It and Assessing Its Performance Impact," Energies, MDPI, vol. 13(9), pages 1-17, May.
    4. Jorge Maldonado-Correa & Sergio Martín-Martínez & Estefanía Artigao & Emilio Gómez-Lázaro, 2020. "Using SCADA Data for Wind Turbine Condition Monitoring: A Systematic Literature Review," Energies, MDPI, vol. 13(12), pages 1-21, June.
    5. Seo, Seokho & Oh, Si-Doek & Kwak, Ho-Young, 2019. "Wind turbine power curve modeling using maximum likelihood estimation method," Renewable Energy, Elsevier, vol. 136(C), pages 1164-1169.
    6. Ciulla, G. & D’Amico, A. & Di Dio, V. & Lo Brano, V., 2019. "Modelling and analysis of real-world wind turbine power curves: Assessing deviations from nominal curve by neural networks," Renewable Energy, Elsevier, vol. 140(C), pages 477-492.
    7. Marčiukaitis, Mantas & Žutautaitė, Inga & Martišauskas, Linas & Jokšas, Benas & Gecevičius, Giedrius & Sfetsos, Athanasios, 2017. "Non-linear regression model for wind turbine power curve," Renewable Energy, Elsevier, vol. 113(C), pages 732-741.
    8. Pinar Pérez, Jesús María & García Márquez, Fausto Pedro & Tobias, Andrew & Papaelias, Mayorkinos, 2013. "Wind turbine reliability analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 463-472.
    9. Stetco, Adrian & Dinmohammadi, Fateme & Zhao, Xingyu & Robu, Valentin & Flynn, David & Barnes, Mike & Keane, John & Nenadic, Goran, 2019. "Machine learning methods for wind turbine condition monitoring: A review," Renewable Energy, Elsevier, vol. 133(C), pages 620-635.
    10. Sequeira, C. & Pacheco, A. & Galego, P. & Gorbeña, E., 2019. "Analysis of the efficiency of wind turbine gearboxes using the temperature variable," Renewable Energy, Elsevier, vol. 135(C), pages 465-472.
    11. Davide Astolfi & Francesco Castellani & Ludovico Terzi, 2018. "Wind Turbine Power Curve Upgrades," Energies, MDPI, vol. 11(5), pages 1-17, May.
    12. Serri, Laura & Lembo, Ettore & Airoldi, Davide & Gelli, Camilla & Beccarello, Massimo, 2018. "Wind energy plants repowering potential in Italy: technical-economic assessment," Renewable Energy, Elsevier, vol. 115(C), pages 382-390.
    13. Raymond Byrne & Davide Astolfi & Francesco Castellani & Neil J. Hewitt, 2020. "A Study of Wind Turbine Performance Decline with Age through Operation Data Analysis," Energies, MDPI, vol. 13(8), pages 1-18, April.
    14. Rogers, T.J. & Gardner, P. & Dervilis, N. & Worden, K. & Maguire, A.E. & Papatheou, E. & Cross, E.J., 2020. "Probabilistic modelling of wind turbine power curves with application of heteroscedastic Gaussian Process regression," Renewable Energy, Elsevier, vol. 148(C), pages 1124-1136.
    15. Hwangbo, Hoon & Ding, Yu & Eisele, Oliver & Weinzierl, Guido & Lang, Ulrich & Pechlivanoglou, Georgios, 2017. "Quantifying the effect of vortex generator installation on wind power production: An academia-industry case study," Renewable Energy, Elsevier, vol. 113(C), pages 1589-1597.
    16. Staffell, Iain & Green, Richard, 2014. "How does wind farm performance decline with age?," Renewable Energy, Elsevier, vol. 66(C), pages 775-786.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Davide Astolfi & Francesco Castellani & Andrea Lombardi & Ludovico Terzi, 2021. "Multivariate SCADA Data Analysis Methods for Real-World Wind Turbine Power Curve Monitoring," Energies, MDPI, vol. 14(4), pages 1-18, February.
    2. Davide Astolfi & Francesco Castellani, 2022. "Editorial on the Special Issue “Wind Turbine Monitoring through Operation Data Analysis”," Energies, MDPI, vol. 15(10), pages 1-4, May.
    3. Davide Astolfi & Raymond Byrne & Francesco Castellani, 2021. "Estimation of the Performance Aging of the Vestas V52 Wind Turbine through Comparative Test Case Analysis," Energies, MDPI, vol. 14(4), pages 1-25, February.
    4. Davide Astolfi & Ravi Pandit & Ludovico Terzi & Andrea Lombardi, 2022. "Discussion of Wind Turbine Performance Based on SCADA Data and Multiple Test Case Analysis," Energies, MDPI, vol. 15(15), pages 1-17, July.
    5. Erik Möllerström & Sean Gregory & Aromal Sugathan, 2021. "Improvement of AEP Predictions with Time for Swedish Wind Farms," Energies, MDPI, vol. 14(12), pages 1-12, June.
    6. Francesco Castellani & Ravi Pandit & Francesco Natili & Francesca Belcastro & Davide Astolfi, 2023. "Advanced Methods for Wind Turbine Performance Analysis Based on SCADA Data and CFD Simulations," Energies, MDPI, vol. 16(3), pages 1-15, January.
    7. Benjamin Pakenham & Anna Ermakova & Ali Mehmanparast, 2021. "A Review of Life Extension Strategies for Offshore Wind Farms Using Techno-Economic Assessments," Energies, MDPI, vol. 14(7), pages 1-23, March.
    8. Davide Astolfi & Ravi Pandit, 2022. "Wind Turbine Performance Decline with Age," Energies, MDPI, vol. 15(14), pages 1-4, July.
    9. Suo Li & Ling-ling Huang & Yang Liu & Meng-yao Zhang, 2021. "Modeling of Ultra-Short Term Offshore Wind Power Prediction Based on Condition-Assessment of Wind Turbines," Energies, MDPI, vol. 14(4), pages 1-16, February.
    10. Hyun-Goo Kim & Jin-Young Kim, 2021. "Analysis of Wind Turbine Aging through Operation Data Calibrated by LiDAR Measurement," Energies, MDPI, vol. 14(8), pages 1-12, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Davide Astolfi & Francesco Castellani & Andrea Lombardi & Ludovico Terzi, 2021. "Multivariate SCADA Data Analysis Methods for Real-World Wind Turbine Power Curve Monitoring," Energies, MDPI, vol. 14(4), pages 1-18, February.
    2. Davide Astolfi & Raymond Byrne & Francesco Castellani, 2021. "Estimation of the Performance Aging of the Vestas V52 Wind Turbine through Comparative Test Case Analysis," Energies, MDPI, vol. 14(4), pages 1-25, February.
    3. Raymond Byrne & Davide Astolfi & Francesco Castellani & Neil J. Hewitt, 2020. "A Study of Wind Turbine Performance Decline with Age through Operation Data Analysis," Energies, MDPI, vol. 13(8), pages 1-18, April.
    4. Zou, Runmin & Yang, Jiaxin & Wang, Yun & Liu, Fang & Essaaidi, Mohamed & Srinivasan, Dipti, 2021. "Wind turbine power curve modeling using an asymmetric error characteristic-based loss function and a hybrid intelligent optimizer," Applied Energy, Elsevier, vol. 304(C).
    5. Jorge Maldonado-Correa & Sergio Martín-Martínez & Estefanía Artigao & Emilio Gómez-Lázaro, 2020. "Using SCADA Data for Wind Turbine Condition Monitoring: A Systematic Literature Review," Energies, MDPI, vol. 13(12), pages 1-21, June.
    6. Francisco Bilendo & Angela Meyer & Hamed Badihi & Ningyun Lu & Philippe Cambron & Bin Jiang, 2022. "Applications and Modeling Techniques of Wind Turbine Power Curve for Wind Farms—A Review," Energies, MDPI, vol. 16(1), pages 1-38, December.
    7. Han Peng & Songyin Li & Linjian Shangguan & Yisa Fan & Hai Zhang, 2023. "Analysis of Wind Turbine Equipment Failure and Intelligent Operation and Maintenance Research," Sustainability, MDPI, vol. 15(10), pages 1-35, May.
    8. Han, Shuang & Qiao, Yanhui & Yan, Ping & Yan, Jie & Liu, Yongqian & Li, Li, 2020. "Wind turbine power curve modeling based on interval extreme probability density for the integration of renewable energies and electric vehicles," Renewable Energy, Elsevier, vol. 157(C), pages 190-203.
    9. Aziz, Usama & Charbonnier, Sylvie & Bérenguer, Christophe & Lebranchu, Alexis & Prevost, Frederic, 2021. "Critical comparison of power-based wind turbine fault-detection methods using a realistic framework for SCADA data simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    10. Francisco Haces-Fernandez, 2020. "GoWInD: Wind Energy Spatiotemporal Assessment and Characterization of End-of-Life Activities," Energies, MDPI, vol. 13(22), pages 1-20, November.
    11. Francesco Castellani & Ravi Pandit & Francesco Natili & Francesca Belcastro & Davide Astolfi, 2023. "Advanced Methods for Wind Turbine Performance Analysis Based on SCADA Data and CFD Simulations," Energies, MDPI, vol. 16(3), pages 1-15, January.
    12. Luis M. Abadie & Nestor Goicoechea, 2021. "Old Wind Farm Life Extension vs. Full Repowering: A Review of Economic Issues and a Stochastic Application for Spain," Energies, MDPI, vol. 14(12), pages 1-24, June.
    13. Ana Rita Nunes & Hugo Morais & Alberto Sardinha, 2021. "Use of Learning Mechanisms to Improve the Condition Monitoring of Wind Turbine Generators: A Review," Energies, MDPI, vol. 14(21), pages 1-22, November.
    14. Davide Astolfi & Francesco Castellani & Matteo Becchetti & Andrea Lombardi & Ludovico Terzi, 2020. "Wind Turbine Systematic Yaw Error: Operation Data Analysis Techniques for Detecting It and Assessing Its Performance Impact," Energies, MDPI, vol. 13(9), pages 1-17, May.
    15. Davide Astolfi & Ravi Pandit & Linyue Gao & Jiarong Hong, 2022. "Individuation of Wind Turbine Systematic Yaw Error through SCADA Data," Energies, MDPI, vol. 15(21), pages 1-5, November.
    16. Korkos, Panagiotis & Linjama, Matti & Kleemola, Jaakko & Lehtovaara, Arto, 2022. "Data annotation and feature extraction in fault detection in a wind turbine hydraulic pitch system," Renewable Energy, Elsevier, vol. 185(C), pages 692-703.
    17. Li, Jianlan & Zhang, Xuran & Zhou, Xing & Lu, Luyi, 2019. "Reliability assessment of wind turbine bearing based on the degradation-Hidden-Markov model," Renewable Energy, Elsevier, vol. 132(C), pages 1076-1087.
    18. Erik Möllerström & Sean Gregory & Aromal Sugathan, 2021. "Improvement of AEP Predictions with Time for Swedish Wind Farms," Energies, MDPI, vol. 14(12), pages 1-12, June.
    19. McKenna, R. & Ostman v.d. Leye, P. & Fichtner, W., 2016. "Key challenges and prospects for large wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1212-1221.
    20. Hyun-Goo Kim & Jin-Young Kim, 2021. "Analysis of Wind Turbine Aging through Operation Data Calibrated by LiDAR Measurement," Energies, MDPI, vol. 14(8), pages 1-12, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5623-:d:435662. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.