IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i17p4459-d405715.html
   My bibliography  Save this article

Windcatcher Louvers to Improve Ventilation Efficiency

Author

Listed:
  • Young Kwon Yang

    (School of Architecture and Building Science, Chung-Ang University, Seoul 06974, Korea)

  • Min Young Kim

    (School of Architecture and Building Science, Chung-Ang University, Seoul 06974, Korea)

  • Yong Woo Song

    (Graduate School, Chung-Ang University, Seoul 06974, Korea)

  • Sung Ho Choi

    (Graduate School, Chung-Ang University, Seoul 06974, Korea)

  • Jin Chul Park

    (School of Architecture and Building Science, Chung-Ang University, Seoul 06974, Korea)

Abstract

Windcatcher louvers are designed to capture air flowing outside a building in order to increase its natural ventilation. There are no studies that have designed the shape of the louver to increase the natural ventilation efficiency of the building. This study aimed to conduct a computational fluid dynamics simulation and mock-up test of a Clark Y airfoil-type windcatcher louver designed to increase the natural ventilation in a building. The following test results were obtained. The optimal angle of attack of the airfoil was calculated via a numerical analysis, which demonstrated that the wind speed was at its highest when the angle of attack was 8°; further, flow separation occurred at angles exceeding 8°, at which point the wind speed began to decrease. The results of the mock-up test demonstrated that the time required to reduce the concentration of fine particles in the indoor air was 120 s shorter when the windcatcher was installed than when it was not, which indicating that the time to reduce particles represents a 37.5%reduction. These results can be seen as reducing the energy consumption of ventilation in the building because the natural ventilation efficiency is increased.

Suggested Citation

  • Young Kwon Yang & Min Young Kim & Yong Woo Song & Sung Ho Choi & Jin Chul Park, 2020. "Windcatcher Louvers to Improve Ventilation Efficiency," Energies, MDPI, vol. 13(17), pages 1-20, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4459-:d:405715
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/17/4459/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/17/4459/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bouchahm, Yasmina & Bourbia, Fatiha & Belhamri, Azeddine, 2011. "Performance analysis and improvement of the use of wind tower in hot dry climate," Renewable Energy, Elsevier, vol. 36(3), pages 898-906.
    2. Beungyong Park & Sihwan Lee, 2020. "Investigation of the Energy Saving Efficiency of a Natural Ventilation Strategy in a Multistory School Building," Energies, MDPI, vol. 13(7), pages 1-13, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lili Zhang & Lei Tian & Qiong Shen & Fei Liu & Haolin Li & Zhuojun Dong & Jingyue Cheng & Haoru Liu & Jiangjun Wan, 2021. "Study on the Influence and Optimization of the Venturi Effect on the Natural Ventilation of Buildings in the Xichang Area," Energies, MDPI, vol. 14(16), pages 1-17, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alsailani, M. & Montazeri, H. & Rezaeiha, A., 2021. "Towards optimal aerodynamic design of wind catchers: Impact of geometrical characteristics," Renewable Energy, Elsevier, vol. 168(C), pages 1344-1363.
    2. Calautit, John Kaiser & Hughes, Ben Richard, 2016. "A passive cooling wind catcher with heat pipe technology: CFD, wind tunnel and field-test analysis," Applied Energy, Elsevier, vol. 162(C), pages 460-471.
    3. Ahmed, Tariq & Kumar, Prashant & Mottet, Laetitia, 2021. "Natural ventilation in warm climates: The challenges of thermal comfort, heatwave resilience and indoor air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    4. Moradi, H. & Eskandari, H., 2012. "An experimental and numerical investigation of Shovadan heating and cooling operation," Renewable Energy, Elsevier, vol. 48(C), pages 364-368.
    5. Calautit, John Kaiser & Hughes, Ben Richard & O’Connor, Dominic & Shahzad, Sally Salome, 2017. "Numerical and experimental analysis of a multi-directional wind tower integrated with vertically-arranged heat transfer devices (VHTD)," Applied Energy, Elsevier, vol. 185(P2), pages 1120-1135.
    6. Haghighi, A.P. & Pakdel, S.H. & Jafari, A., 2016. "A study of a wind catcher assisted adsorption cooling channel for natural cooling of a 2-storey building," Energy, Elsevier, vol. 102(C), pages 118-138.
    7. Calautit, John Kaiser & Chaudhry, Hassam Nasarullah & Hughes, Ben Richard & Ghani, Saud Abdul, 2013. "Comparison between evaporative cooling and a heat pipe assisted thermal loop for a commercial wind tower in hot and dry climatic conditions," Applied Energy, Elsevier, vol. 101(C), pages 740-755.
    8. Jomehzadeh, Fatemeh & Nejat, Payam & Calautit, John Kaiser & Yusof, Mohd Badruddin Mohd & Zaki, Sheikh Ahmad & Hughes, Ben Richard & Yazid, Muhammad Noor Afiq Witri Muhammad, 2017. "A review on windcatcher for passive cooling and natural ventilation in buildings, Part 1: Indoor air quality and thermal comfort assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 736-756.
    9. Hughes, Ben Richard & Calautit, John Kaiser & Ghani, Saud Abdul, 2012. "The development of commercial wind towers for natural ventilation: A review," Applied Energy, Elsevier, vol. 92(C), pages 606-627.
    10. Zhang, Haihua & Yang, Dong & Tam, Vivian W.Y. & Tao, Yao & Zhang, Guomin & Setunge, Sujeeva & Shi, Long, 2021. "A critical review of combined natural ventilation techniques in sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    11. Bennamoun, Lyes, 2011. "Reviewing the experience of solar drying in Algeria with presentation of the different design aspects of solar dryers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3371-3379, September.
    12. Lili Zhang & Lei Tian & Qiong Shen & Fei Liu & Haolin Li & Zhuojun Dong & Jingyue Cheng & Haoru Liu & Jiangjun Wan, 2021. "Study on the Influence and Optimization of the Venturi Effect on the Natural Ventilation of Buildings in the Xichang Area," Energies, MDPI, vol. 14(16), pages 1-17, August.
    13. Azam Noroozi & Yannis S. Veneris, 2018. "Thermal Assessment of a Novel Combine Evaporative Cooling Wind Catcher," Energies, MDPI, vol. 11(2), pages 1-15, February.
    14. Calautit, John Kaiser & Hughes, Ben Richard & Chaudhry, Hassam Nasarullah & Ghani, Saud Abdul, 2013. "CFD analysis of a heat transfer device integrated wind tower system for hot and dry climate," Applied Energy, Elsevier, vol. 112(C), pages 576-591.
    15. Simon Li, 2023. "Review of Engineering Controls for Indoor Air Quality: A Systems Design Perspective," Sustainability, MDPI, vol. 15(19), pages 1-46, September.
    16. Moghtader Gilvaei, Zoleikha & Haghighi Poshtiri, Amin & Mirzazade Akbarpoor, Ali, 2022. "A novel passive system for providing natural ventilation and passive cooling: Evaluating thermal comfort and building energy," Renewable Energy, Elsevier, vol. 198(C), pages 463-483.
    17. Calautit, John Kaiser & Hughes, Ben Richard & Nasir, Diana SNM, 2017. "Climatic analysis of a passive cooling technology for the built environment in hot countries," Applied Energy, Elsevier, vol. 186(P3), pages 321-335.
    18. Mishan Shrestha & Hom Bahadur Rijal, 2023. "Investigation on Summer Thermal Comfort and Passive Thermal Improvements in Naturally Ventilated Nepalese School Buildings," Energies, MDPI, vol. 16(3), pages 1-33, January.
    19. Zhengrong Jiang & Weijun Gao, 2021. "Impact of Enclosure Boundary Patterns and Lift-Up Design on Optimization of Summer Pedestrian Wind Environment in High-Density Residential Districts," Energies, MDPI, vol. 14(11), pages 1-17, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4459-:d:405715. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.