IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i12p3123-d372390.html
   My bibliography  Save this article

Asymmetric Loss Functions for Contract Capacity Optimization

Author

Listed:
  • Jun-Lin Lin

    (Department of Information Management, Yuan Ze University, Taoyuan 32003, Taiwan
    Innovation Center for Big Data and Digital Convergence, Yuan Ze University, Taoyuan 32003, Taiwan)

  • Yiqing Zhang

    (Department of Information Management, Yuan Ze University, Taoyuan 32003, Taiwan
    School of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024, China)

  • Kunhuang Zhu

    (Department of Information Management, Yuan Ze University, Taoyuan 32003, Taiwan
    School of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024, China)

  • Binbin Chen

    (Department of Information Management, Yuan Ze University, Taoyuan 32003, Taiwan
    School of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024, China)

  • Feng Zhang

    (Department of Information Management, Yuan Ze University, Taoyuan 32003, Taiwan
    School of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024, China)

Abstract

For high-voltage and extra-high-voltage consumers, the electricity cost depends not only on the power consumed but also on the contract capacity. For the same amount of power consumed, the smaller the difference between the contract capacity and the power consumed, the smaller the electricity cost. Thus, predicting the future power demand for setting the contract capacity is of great economic interest. In the literature, most works predict the future power demand based on a symmetric loss function, such as mean squared error. However, the electricity pricing structure is asymmetric to the under- and overestimation of the actual power demand. In this work, we proposed several loss functions derived from the asymmetric electricity pricing structure. We experimented with the Long Short-Term Memory neural network with these loss functions using a real dataset from a large manufacturing company in the electronics industry in Taiwan. The results show that the proposed asymmetric loss functions outperform the commonly used symmetric loss function, with a saving on the electricity cost ranging from 0.88% to 2.42%.

Suggested Citation

  • Jun-Lin Lin & Yiqing Zhang & Kunhuang Zhu & Binbin Chen & Feng Zhang, 2020. "Asymmetric Loss Functions for Contract Capacity Optimization," Energies, MDPI, vol. 13(12), pages 1-13, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3123-:d:372390
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/12/3123/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/12/3123/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hao Chen & Qiulan Wan & Yurong Wang, 2014. "Refined Diebold-Mariano Test Methods for the Evaluation of Wind Power Forecasting Models," Energies, MDPI, vol. 7(7), pages 1-14, July.
    2. Rout, Ullash K. & Voβ, Alfred & Singh, Anoop & Fahl, Ulrich & Blesl, Markus & Ó Gallachóir, Brian P., 2011. "Energy and emissions forecast of China over a long-time horizon," Energy, Elsevier, vol. 36(1), pages 1-11.
    3. Liu, Yang & Wang, Wei & Ghadimi, Noradin, 2017. "Electricity load forecasting by an improved forecast engine for building level consumers," Energy, Elsevier, vol. 139(C), pages 18-30.
    4. Arpita Samanta Santra & Jun-Lin Lin, 2019. "Integrating Long Short-Term Memory and Genetic Algorithm for Short-Term Load Forecasting," Energies, MDPI, vol. 12(11), pages 1-11, May.
    5. Rafael Sánchez-Durán & Joaquín Luque & Julio Barbancho, 2019. "Long-Term Demand Forecasting in a Scenario of Energy Transition," Energies, MDPI, vol. 12(16), pages 1-23, August.
    6. Christian Pierdzioch & Jan-Christoph Rülke, 2013. "A Note on Forecasting the Rate of Change of the Price of Oil: Asymmetric Loss and Forecast Rationality," Economies, MDPI, vol. 1(1), pages 1-8, March.
    7. Huiting Zheng & Jiabin Yuan & Long Chen, 2017. "Short-Term Load Forecasting Using EMD-LSTM Neural Networks with a Xgboost Algorithm for Feature Importance Evaluation," Energies, MDPI, vol. 10(8), pages 1-20, August.
    8. Ömer Özgür Bozkurt & Göksel Biricik & Ziya Cihan Tayşi, 2017. "Artificial neural network and SARIMA based models for power load forecasting in Turkish electricity market," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-24, April.
    9. Abu-Shikhah, Nazih & Elkarmi, Fawwaz, 2011. "Medium-term electric load forecasting using singular value decomposition," Energy, Elsevier, vol. 36(7), pages 4259-4271.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dana-Mihaela Petroșanu & Alexandru Pîrjan, 2020. "Electricity Consumption Forecasting Based on a Bidirectional Long-Short-Term Memory Artificial Neural Network," Sustainability, MDPI, vol. 13(1), pages 1-31, December.
    2. Fanidhar Dewangan & Almoataz Y. Abdelaziz & Monalisa Biswal, 2023. "Load Forecasting Models in Smart Grid Using Smart Meter Information: A Review," Energies, MDPI, vol. 16(3), pages 1-55, January.
    3. Li, Tianyu & Liu, Huiying & Wang, Hui & Yao, Yongming, 2020. "Hierarchical predictive control-based economic energy management for fuel cell hybrid construction vehicles," Energy, Elsevier, vol. 198(C).
    4. Li, Xi & Yu, Biying, 2019. "Peaking CO2 emissions for China's urban passenger transport sector," Energy Policy, Elsevier, vol. 133(C).
    5. Adom, Philip Kofi & Bekoe, William, 2012. "Conditional dynamic forecast of electrical energy consumption requirements in Ghana by 2020: A comparison of ARDL and PAM," Energy, Elsevier, vol. 44(1), pages 367-380.
    6. Meng, Ming & Niu, Dongxiao, 2011. "Modeling CO2 emissions from fossil fuel combustion using the logistic equation," Energy, Elsevier, vol. 36(5), pages 3355-3359.
    7. Bingjie Jin & Guihua Zeng & Zhilin Lu & Hongqiao Peng & Shuxin Luo & Xinhe Yang & Haojun Zhu & Mingbo Liu, 2022. "Hybrid LSTM–BPNN-to-BPNN Model Considering Multi-Source Information for Forecasting Medium- and Long-Term Electricity Peak Load," Energies, MDPI, vol. 15(20), pages 1-20, October.
    8. Geng, Jiang-Bo & Ji, Qiang, 2014. "Multi-perspective analysis of China's energy supply security," Energy, Elsevier, vol. 64(C), pages 541-550.
    9. Zhang, Meng & Guo, Huan & Sun, Ming & Liu, Sifeng & Forrest, Jeffrey, 2022. "A novel flexible grey multivariable model and its application in forecasting energy consumption in China," Energy, Elsevier, vol. 239(PE).
    10. Jiaan Zhang & Chenyu Liu & Leijiao Ge, 2022. "Short-Term Load Forecasting Model of Electric Vehicle Charging Load Based on MCCNN-TCN," Energies, MDPI, vol. 15(7), pages 1-25, April.
    11. Ijaz Ul Haq & Amin Ullah & Samee Ullah Khan & Noman Khan & Mi Young Lee & Seungmin Rho & Sung Wook Baik, 2021. "Sequential Learning-Based Energy Consumption Prediction Model for Residential and Commercial Sectors," Mathematics, MDPI, vol. 9(6), pages 1-17, March.
    12. Umut Ugurlu & Ilkay Oksuz & Oktay Tas, 2018. "Electricity Price Forecasting Using Recurrent Neural Networks," Energies, MDPI, vol. 11(5), pages 1-23, May.
    13. Keon Baek & Woong Ko & Jinho Kim, 2019. "Optimal Scheduling of Distributed Energy Resources in Residential Building under the Demand Response Commitment Contract," Energies, MDPI, vol. 12(14), pages 1-19, July.
    14. Mohamed Massaoudi & Ines Chihi & Lilia Sidhom & Mohamed Trabelsi & Shady S. Refaat & Fakhreddine S. Oueslati, 2021. "Enhanced Random Forest Model for Robust Short-Term Photovoltaic Power Forecasting Using Weather Measurements," Energies, MDPI, vol. 14(13), pages 1-20, July.
    15. Blanco, Herib & Gómez Vilchez, Jonatan J. & Nijs, Wouter & Thiel, Christian & Faaij, André, 2019. "Soft-linking of a behavioral model for transport with energy system cost optimization applied to hydrogen in EU," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    16. Oreshkin, Boris N. & Dudek, Grzegorz & Pełka, Paweł & Turkina, Ekaterina, 2021. "N-BEATS neural network for mid-term electricity load forecasting," Applied Energy, Elsevier, vol. 293(C).
    17. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    18. Yongli Wang & Xiangyi Zhou & Hao Liu & Xichang Chen & Zixin Yan & Dexin Li & Chang Liu & Jiarui Wang, 2023. "Evaluation of the Maturity of Urban Energy Internet Development Based on AHP-Entropy Weight Method and Improved TOPSIS," Energies, MDPI, vol. 16(13), pages 1-18, July.
    19. Salah Bouktif & Ali Fiaz & Ali Ouni & Mohamed Adel Serhani, 2018. "Optimal Deep Learning LSTM Model for Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches †," Energies, MDPI, vol. 11(7), pages 1-20, June.
    20. Wei, Nan & Li, Changjun & Peng, Xiaolong & Li, Yang & Zeng, Fanhua, 2019. "Daily natural gas consumption forecasting via the application of a novel hybrid model," Applied Energy, Elsevier, vol. 250(C), pages 358-368.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3123-:d:372390. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.