IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i6p1177-d217353.html
   My bibliography  Save this article

Estimating On-Road Vehicle Fuel Economy in Africa: A Case Study Based on an Urban Transport Survey in Nairobi, Kenya

Author

Listed:
  • Aderiana Mutheu Mbandi

    (Stockholm Environment Institute, Environment Department, Environment Building, Wentworth Way, University of York, York YO10 5NG, UK)

  • Jan R. Böhnke

    (Dundee Centre for Health and Related Research, School of Nursing and Health Sciences, University of Dundee, Dundee DD1 4HJ, UK)

  • Dietrich Schwela

    (Stockholm Environment Institute, Environment Department, Environment Building, Wentworth Way, University of York, York YO10 5NG, UK)

  • Harry Vallack

    (Stockholm Environment Institute, Environment Department, Environment Building, Wentworth Way, University of York, York YO10 5NG, UK)

  • Mike R. Ashmore

    (Stockholm Environment Institute, Environment Department, Environment Building, Wentworth Way, University of York, York YO10 5NG, UK)

  • Lisa Emberson

    (Stockholm Environment Institute, Environment Department, Environment Building, Wentworth Way, University of York, York YO10 5NG, UK)

Abstract

In African cities like Nairobi, policies to improve vehicle fuel economy help to reduce greenhouse gas emissions and improve air quality, but lack of data is a major challenge. We present a methodology for estimating fuel economy in such cities. Vehicle characteristics and activity data, for both the formal fleet (private cars, motorcycles, light and heavy trucks) and informal fleet—minibuses ( matatus ), three-wheelers ( tuktuks ), goods vehicles ( AskforTransport ) and two-wheelers ( bodabodas )—were collected and used to estimate fuel economy. Using two empirical models, general linear modelling (GLM) and artificial neural network (ANN), the relationships between vehicle characteristics for this fleet and fuel economy were analyzed for the first time. Fuel economy for bodabodas (4.6 ± 0.4 L/100 km), tuktuks (8.7 ± 4.6 L/100 km), passenger cars (22.8 ± 3.0 L/100 km), and matatus (33.1 ± 2.5 L/100 km) was found to be 2–3 times worse than in the countries these vehicles are imported from. The GLM provided the better estimate of predicted fuel economy based on vehicle characteristics. The analysis of survey data covering a large informal urban fleet helps meet the challenge of a lack of availability of vehicle data for emissions inventories. This may be useful to policy makers as emissions inventories underpin policy development to reduce emissions.

Suggested Citation

  • Aderiana Mutheu Mbandi & Jan R. Böhnke & Dietrich Schwela & Harry Vallack & Mike R. Ashmore & Lisa Emberson, 2019. "Estimating On-Road Vehicle Fuel Economy in Africa: A Case Study Based on an Urban Transport Survey in Nairobi, Kenya," Energies, MDPI, vol. 12(6), pages 1-28, March.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:6:p:1177-:d:217353
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/6/1177/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/6/1177/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Shaojun & Wu, Ye & Liu, Huan & Huang, Ruikun & Un, Puikei & Zhou, Yu & Fu, Lixin & Hao, Jiming, 2014. "Real-world fuel consumption and CO2 (carbon dioxide) emissions by driving conditions for light-duty passenger vehicles in China," Energy, Elsevier, vol. 69(C), pages 247-257.
    2. Huo, Hong & Yao, Zhiliang & He, Kebin & Yu, Xin, 2011. "Fuel consumption rates of passenger cars in China: Labels versus real-world," Energy Policy, Elsevier, vol. 39(11), pages 7130-7135.
    3. Zhang, Shaojun & Wu, Ye & Liu, Huan & Huang, Ruikun & Yang, Liuhanzi & Li, Zhenhua & Fu, Lixin & Hao, Jiming, 2014. "Real-world fuel consumption and CO2 emissions of urban public buses in Beijing," Applied Energy, Elsevier, vol. 113(C), pages 1645-1655.
    4. Ntziachristos, L. & Mellios, G. & Tsokolis, D. & Keller, M. & Hausberger, S. & Ligterink, N.E. & Dilara, P., 2014. "In-use vs. type-approval fuel consumption of current passenger cars in Europe," Energy Policy, Elsevier, vol. 67(C), pages 403-411.
    5. Dieter Schwela, 2012. "Review of Urban Air Quality in Sub-Saharan Africa Region," World Bank Publications - Reports 26864, The World Bank Group.
    6. Behrens, Roger & McCormick, Dorothy & Orero, Risper & Ommeh, Marilyn, 2017. "Improving paratransit service: Lessons from inter-city matatu cooperatives in Kenya," Transport Policy, Elsevier, vol. 53(C), pages 79-88.
    7. Hao, Han & Wang, Sinan & Liu, Zongwei & Zhao, Fuquan, 2016. "The impact of stepped fuel economy targets on automaker's light-weighting strategy: The China case," Energy, Elsevier, vol. 94(C), pages 755-765.
    8. Horton N. J. & Lipsitz S. R., 2001. "Multiple Imputation in Practice: Comparison of Software Packages for Regression Models With Missing Variables," The American Statistician, American Statistical Association, vol. 55, pages 244-254, August.
    9. Salon, Deborah & Aligula, Eric M., 2012. "Urban travel in Nairobi, Kenya: analysis, insights, and opportunities," Journal of Transport Geography, Elsevier, vol. 22(C), pages 65-76.
    10. Schipper, Lee, 2011. "Automobile use, fuel economy and CO2 emissions in industrialized countries: Encouraging trends through 2008?," Transport Policy, Elsevier, vol. 18(2), pages 358-372, March.
    11. Haq, Gary & Weiss, Martin, 2016. "CO2 labelling of passenger cars in Europe: Status, challenges, and future prospects," Energy Policy, Elsevier, vol. 95(C), pages 324-335.
    12. Honaker, James & King, Gary & Blackwell, Matthew, 2011. "Amelia II: A Program for Missing Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 45(i07).
    13. Cervero, Robert & Golub, Aaron, 2007. "Informal transport: A global perspective," Transport Policy, Elsevier, vol. 14(6), pages 445-457, November.
    14. Huo, Hong & He, Kebin & Wang, Michael & Yao, Zhiliang, 2012. "Vehicle technologies, fuel-economy policies, and fuel-consumption rates of Chinese vehicles," Energy Policy, Elsevier, vol. 43(C), pages 30-36.
    15. Tietge, Uwe & Mock, Peter & Franco, Vicente & Zacharof, Nikiforos, 2017. "From laboratory to road: Modeling the divergence between official and real-world fuel consumption and CO2 emission values in the German passenger car market for the years 2001–2014," Energy Policy, Elsevier, vol. 103(C), pages 212-222.
    16. Madina Doumbia & N’Datchoh E. Toure & Siélé Silue & Véronique Yoboue & Arona. Diedhiou & Célestin Hauhouot, 2018. "Emissions from the Road Traffic of West African Cities: Assessment of Vehicle Fleet and Fuel Consumption," Energies, MDPI, vol. 11(9), pages 1-16, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lorena Cadavid & Kathleen Salazar-Serna, 2021. "Mapping the Research Landscape for the Motorcycle Market Policies: Sustainability as a Trend—A Systematic Literature Review," Sustainability, MDPI, vol. 13(19), pages 1-22, September.
    2. Peter S. Larson & Leon Espira & Bailey E. Glenn & Miles C. Larson & Christopher S. Crowe & Seoyeon Jang & Marie S. O’Neill, 2022. "Long-Term PM 2.5 Exposure Is Associated with Symptoms of Acute Respiratory Infections among Children under Five Years of Age in Kenya, 2014," IJERPH, MDPI, vol. 19(5), pages 1-20, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Rujie & Ren, Huanhuan & Liu, Yong & Yu, Biying, 2021. "Gap between on-road and official fuel efficiency of passenger vehicles in China," Energy Policy, Elsevier, vol. 152(C).
    2. Fan, Pengfei & Yin, Hang & Lu, Hongyu & Wu, Yizheng & Zhai, Zhiqiang & Yu, Lei & Song, Guohua, 2023. "Which factor contributes more to the fuel consumption gap between in-laboratory vs. real-world driving conditions? An independent component analysis," Energy Policy, Elsevier, vol. 182(C).
    3. Greene, David L. & Khattak, Asad J. & Liu, Jun & Wang, Xin & Hopson, Janet L. & Goeltz, Richard, 2017. "What is the evidence concerning the gap between on-road and Environmental Protection Agency fuel economy ratings?," Transport Policy, Elsevier, vol. 53(C), pages 146-160.
    4. Zhang, Shaojun & Wu, Ye & Un, Puikei & Fu, Lixin & Hao, Jiming, 2016. "Modeling real-world fuel consumption and carbon dioxide emissions with high resolution for light-duty passenger vehicles in a traffic populated city," Energy, Elsevier, vol. 113(C), pages 461-471.
    5. Sina, Naser & Nasiri, Sayyad & Karkhaneh, Vahid, 2015. "Effects of resistive loads and tire inflation pressure on tire power losses and CO2 emissions in real-world conditions," Applied Energy, Elsevier, vol. 157(C), pages 974-983.
    6. Küng, Lukas & Bütler, Thomas & Georges, Gil & Boulouchos, Konstantinos, 2019. "How much energy does a car need on the road?," Applied Energy, Elsevier, vol. 256(C).
    7. Tsiakmakis, Stefanos & Fontaras, Georgios & Dornoff, Jan & Valverde, Victor & Komnos, Dimitrios & Ciuffo, Biagio & Mock, Peter & Samaras, Zissis, 2019. "From lab-to-road & vice-versa: Using a simulation-based approach for predicting real-world CO2 emissions," Energy, Elsevier, vol. 169(C), pages 1153-1165.
    8. Triantafyllopoulos, Georgios & Kontses, Anastasios & Tsokolis, Dimitrios & Ntziachristos, Leonidas & Samaras, Zissis, 2017. "Potential of energy efficiency technologies in reducing vehicle consumption under type approval and real world conditions," Energy, Elsevier, vol. 140(P1), pages 365-373.
    9. Li, Yi & Wang, Zhaohua & Wang, Ke & Zhang, Bin, 2021. "Fuel economy of Chinese light-duty car manufacturers: An efficiency analysis perspective," Energy, Elsevier, vol. 220(C).
    10. Nils Hooftman & Luis Oliveira & Maarten Messagie & Thierry Coosemans & Joeri Van Mierlo, 2016. "Environmental Analysis of Petrol, Diesel and Electric Passenger Cars in a Belgian Urban Setting," Energies, MDPI, vol. 9(2), pages 1-24, January.
    11. Salvo, Orlando de & Vaz de Almeida, Flávio G., 2019. "Influence of technologies on energy efficiency results of official Brazilian tests of vehicle energy consumption," Applied Energy, Elsevier, vol. 241(C), pages 98-112.
    12. Ahmad R. Alsaber & Jiazhu Pan & Adeeba Al-Hurban, 2021. "Handling Complex Missing Data Using Random Forest Approach for an Air Quality Monitoring Dataset: A Case Study of Kuwait Environmental Data (2012 to 2018)," IJERPH, MDPI, vol. 18(3), pages 1-25, February.
    13. Mogno, Caterina & Fontaras, Georgios & Arcidiacono, Vincenzo & Komnos, Dimitrios & Pavlovic, Jelica & Ciuffo, Biagio & Makridis, Michail & Valverde, Victor, 2022. "The application of the CO2MPAS model for vehicle CO2 emissions estimation over real traffic conditions," Transport Policy, Elsevier, vol. 124(C), pages 152-159.
    14. Zhou, Boya & Wu, Ye & Zhou, Bin & Wang, Renjie & Ke, Wenwei & Zhang, Shaojun & Hao, Jiming, 2016. "Real-world performance of battery electric buses and their life-cycle benefits with respect to energy consumption and carbon dioxide emissions," Energy, Elsevier, vol. 96(C), pages 603-613.
    15. Roozbeh Jalali & Seama Koohi-Fayegh & Khalil El-Khatib & Daniel Hoornweg & Heng Li, 2017. "Investigating the Potential of Ridesharing to Reduce Vehicle Emissions," Urban Planning, Cogitatio Press, vol. 2(2), pages 26-40.
    16. Hamid Heidarian Miri & Jafar Hassanzadeh & Abdolreza Rajaeefard & Majid Mirmohammadkhani & Kambiz Ahmadi Angali, 2016. "Multiple Imputation to Correct for Nonresponse Bias: Application in Non-communicable Disease Risk Factors Survey," Global Journal of Health Science, Canadian Center of Science and Education, vol. 8(1), pages 133-133, January.
    17. Mateo-Babiano, Iderlina & Recio, Redento B. & Ashmore, David P. & Guillen, Marie Danielle & Gaspay, Sandy Mae, 2020. "Formalising the jeepney industry in the Philippines – A confirmatory thematic analysis of key transitionary issues," Research in Transportation Economics, Elsevier, vol. 83(C).
    18. Louis G. Alcorn & Alex Karner, 2021. "Integrating formal and informal transit into one hybrid passenger transport system in Lagos, Nigeria," Transportation, Springer, vol. 48(3), pages 1361-1377, June.
    19. José Ignacio Huertas & Luis Felipe Quirama & Michael Giraldo & Jenny Díaz, 2019. "Comparison of Three Methods for Constructing Real Driving Cycles," Energies, MDPI, vol. 12(4), pages 1-15, February.
    20. Wang, Renjie & Wu, Ye & Ke, Wenwei & Zhang, Shaojun & Zhou, Boya & Hao, Jiming, 2015. "Can propulsion and fuel diversity for the bus fleet achieve the win–win strategy of energy conservation and environmental protection?," Applied Energy, Elsevier, vol. 147(C), pages 92-103.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:6:p:1177-:d:217353. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.