IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i6p1171-d217238.html
   My bibliography  Save this article

Water Condensation in Traction Battery Systems

Author

Listed:
  • Woong-Ki Kim

    (Technische Hochschule Ingolstadt, Esplanade 10, 85049 Ingolstadt, Germany)

  • Fabian Steger

    (Technische Hochschule Ingolstadt, Esplanade 10, 85049 Ingolstadt, Germany
    Royal Melbourne Institute of Technology, School of Engineering, Melbourne, VIC 3000, Australia)

  • Bhavya Kotak

    (Technische Hochschule Ingolstadt, Esplanade 10, 85049 Ingolstadt, Germany)

  • Peter V. R. Knudsen

    (Faculty of Engineering, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark)

  • Uwe Girgsdies

    (Audi AG, Auto-Union-Straße 1, 85045 Ingolstadt, Germany)

  • Hans-Georg Schweiger

    (Technische Hochschule Ingolstadt, Esplanade 10, 85049 Ingolstadt, Germany)

Abstract

Lithium-ion traction battery systems of hybrid and electric vehicles must have a high level of durability and reliability like all other components and systems of a vehicle. Battery systems get heated while in the application. To ensure the desired life span and performance, most systems are equipped with a cooling system. The changing environmental condition in daily use may cause water condensation in the housing of the battery system. In this study, three system designs were investigated, to compare different solutions to deal with pressure differences and condensation: (1) a sealed battery system, (2) an open system and (3) a battery system equipped with a pressure compensation element (PCE). These three designs were tested under two conditions: (a) in normal operation and (b) in a maximum humidity scenario. The amount of the condensation in the housing was determined through a change in relative humidity of air inside the housing. Through PCE and available spacing of the housing, moisture entered into the housing during the cooling process. While applying the test scenarios, the gradient-based drift of the moisture into the housing contributed maximum towards the condensation. Condensation occurred on the internal surface for all the three design variants.

Suggested Citation

  • Woong-Ki Kim & Fabian Steger & Bhavya Kotak & Peter V. R. Knudsen & Uwe Girgsdies & Hans-Georg Schweiger, 2019. "Water Condensation in Traction Battery Systems," Energies, MDPI, vol. 12(6), pages 1-17, March.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:6:p:1171-:d:217238
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/6/1171/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/6/1171/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yaksic, Andrés & Tilton, John E., 2009. "Using the cumulative availability curve to assess the threat of mineral depletion: The case of lithium," Resources Policy, Elsevier, vol. 34(4), pages 185-194, December.
    2. Paul W. Gruber & Pablo A. Medina & Gregory A. Keoleian & Stephen E. Kesler & Mark P. Everson & Timothy J. Wallington, 2011. "Global Lithium Availability," Journal of Industrial Ecology, Yale University, vol. 15(5), pages 760-775, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dr. Kyriazopoulos Georgios & Thanou Efthymia, 2020. "Mergers and Acquisitions and how they affect the Labor productivity. Evidence from the Greek Banking system," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 10(2), pages 1-3.
    2. Mohammad Ali Rajaeifar & Marco Raugei & Bernhard Steubing & Anthony Hartwell & Paul A. Anderson & Oliver Heidrich, 2021. "Life cycle assessment of lithium‐ion battery recycling using pyrometallurgical technologies," Journal of Industrial Ecology, Yale University, vol. 25(6), pages 1560-1571, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sverdrup, Harald Ulrik, 2016. "Modelling global extraction, supply, price and depletion of the extractable geological resources with the LITHIUM model," Resources, Conservation & Recycling, Elsevier, vol. 114(C), pages 112-129.
    2. Daw, Georges, 2017. "Security of mineral resources: A new framework for quantitative assessment of criticality," Resources Policy, Elsevier, vol. 53(C), pages 173-189.
    3. Zeng, Xianlai & Li, Jinhui, 2013. "Implications for the carrying capacity of lithium reserve in China," Resources, Conservation & Recycling, Elsevier, vol. 80(C), pages 58-63.
    4. Jean-François Labbé & Georges Daw, 2012. "Lithium: An Overview [Panorama 2011 du marché du lithium]," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00809298, HAL.
    5. Richa, Kirti & Babbitt, Callie W. & Gaustad, Gabrielle & Wang, Xue, 2014. "A future perspective on lithium-ion battery waste flows from electric vehicles," Resources, Conservation & Recycling, Elsevier, vol. 83(C), pages 63-76.
    6. Fernando Moreno-Brieva & Carlos Merino, 2020. "African international trade in the global value chain of lithium batteries," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(6), pages 1031-1052, August.
    7. Miedema, Jan H. & Moll, Henri C., 2013. "Lithium availability in the EU27 for battery-driven vehicles: The impact of recycling and substitution on the confrontation between supply and demand until2050," Resources Policy, Elsevier, vol. 38(2), pages 204-211.
    8. Jean-François Labbé & Georges Daw, 2012. "Lithium: An Overview [Panorama 2011 du marché du lithium]," Working Papers halshs-00809298, HAL.
    9. Lee, J. & Bazilian, M. & Sovacool, B. & Hund, K. & Jowitt, S.M. & Nguyen, T.P. & Månberger, A. & Kah, M. & Greene, S. & Galeazzi, C. & Awuah-Offei, K. & Moats, M. & Tilton, J. & Kukoda, S., 2020. "Reviewing the material and metal security of low-carbon energy transitions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    10. Speirs, Jamie & Contestabile, Marcello & Houari, Yassine & Gross, Robert, 2014. "The future of lithium availability for electric vehicle batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 183-193.
    11. Karan Bhuwalka & Randolph E. Kirchain & Elsa A. Olivetti & Richard Roth, 2023. "Quantifying the drivers of long‐term prices in materials supply chains," Journal of Industrial Ecology, Yale University, vol. 27(1), pages 141-154, February.
    12. Philip Maxwell & Mauricio Mora, 2020. "Lithium and Chile: looking back and looking forward," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 33(1), pages 57-71, July.
    13. Simon, Bálint & Ziemann, Saskia & Weil, Marcel, 2015. "Potential metal requirement of active materials in lithium-ion battery cells of electric vehicles and its impact on reserves: Focus on Europe," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 300-310.
    14. Kushnir, Duncan & Sandén, Björn A., 2012. "The time dimension and lithium resource constraints for electric vehicles," Resources Policy, Elsevier, vol. 37(1), pages 93-103.
    15. Lin, Shunda & Liu, Renlong & Guo, Shenghui, 2022. "High temperature microwave dielectric and thermochemical properties of waste LixMn2O4 battery cathode materials reduced by moso bamboo," Renewable Energy, Elsevier, vol. 181(C), pages 714-724.
    16. Jinhyeong Park & Munsu Lee & Gunwoo Kim & Seongyun Park & Jonghoon Kim, 2020. "Integrated Approach Based on Dual Extended Kalman Filter and Multivariate Autoregressive Model for Predicting Battery Capacity Using Health Indicator and SOC/SOH," Energies, MDPI, vol. 13(9), pages 1-20, April.
    17. Gil-Alana, Luis A. & Monge, Manuel, 2019. "Lithium: Production and estimated consumption. Evidence of persistence," Resources Policy, Elsevier, vol. 60(C), pages 198-202.
    18. Söderholm, Patrik & Tilton, John E., 2012. "Material efficiency: An economic perspective," Resources, Conservation & Recycling, Elsevier, vol. 61(C), pages 75-82.
    19. Ziemann, Saskia & Weil, Marcel & Schebek, Liselotte, 2012. "Tracing the fate of lithium––The development of a material flow model," Resources, Conservation & Recycling, Elsevier, vol. 63(C), pages 26-34.
    20. Knut Einar Rosendahl & Diana Roa Rubiano, 2019. "How Effective is Lithium Recycling as a Remedy for Resource Scarcity?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(3), pages 985-1010, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:6:p:1171-:d:217238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.