IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i6p1163-d217133.html
   My bibliography  Save this article

A Novel Approach to Stabilize Foam Using Fluorinated Surfactants

Author

Listed:
  • Muhammad Shahzad Kamal

    (Center for Integrative Petroleum Research, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia)

Abstract

Selection of surfactants for enhanced oil recovery and other upstream applications is a challenging task. For enhanced oil recovery applications, a surfactant should be thermally stable, compatible with reservoir brine, and have lower adsorption on reservoir rock, have high foamability and foam stability, and should be economically viable. Foam improves the oil recovery by increasing the viscosity of the displacing fluid and by reducing the capillary forces due to a reduction in interfacial tension. In this work, foamability and foam stability of two different surfactants were evaluated using a dynamic foam analyzer. These surfactants were fluorinated zwitterionic, and hydrocarbon zwitterionic surfactants. The effect of various parameters such as surfactant type and structure, temperature, salinity, and type of injected gas was investigated on foamability and foam stability. The foamability was assessed using the volume of foam produced by injecting a constant volume of gas and foam stability was determined by half-life time. The maximum foam generation was obtained using hydrocarbon zwitterionic surfactant. However, the foam generated using fluorinated zwitterionic surfactant was more stable. A mixture of zwitterionic fluorinated and hydrocarbon fluorinated surfactant showed better foam generation and foam stability. The foam generated using CO 2 has less stability compared to the foam generated using air injection. Presence of salts increases the foam stability and foam generation. At high temperature, the foamability of the surfactants increased. However, the foam stability was reduced at high temperature for all type of surfactants. This study helps in optimizing the surfactant formulations consisting of a fluorinated and hydrocarbon zwitterionic surfactant for foam injections.

Suggested Citation

  • Muhammad Shahzad Kamal, 2019. "A Novel Approach to Stabilize Foam Using Fluorinated Surfactants," Energies, MDPI, vol. 12(6), pages 1-12, March.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:6:p:1163-:d:217133
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/6/1163/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/6/1163/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kun Qian & Shenglai Yang & Hongen Dou & Qian Wang & Lu Wang & Yu Huang, 2018. "Experimental Investigation on Microscopic Residual Oil Distribution During CO 2 Huff-and-Puff Process in Tight Oil Reservoirs," Energies, MDPI, vol. 11(10), pages 1-16, October.
    2. Teng Lu & Zhaomin Li & Yan Zhou, 2017. "Flow Behavior and Displacement Mechanisms of Nanoparticle Stabilized Foam Flooding for Enhanced Heavy Oil Recovery," Energies, MDPI, vol. 10(4), pages 1-21, April.
    3. Qian Wang & Shenglai Yang & Haishui Han & Lu Wang & Kun Qian & Jieqiong Pang, 2019. "Experimental Investigation on the Effects of CO 2 Displacement Methods on Petrophysical Property Changes of Ultra-Low Permeability Sandstone Reservoirs Near Injection Wells," Energies, MDPI, vol. 12(2), pages 1-20, January.
    4. Negar Nazari & Jyun-Syung Tsau & Reza Barati, 2017. "CO 2 Foam Stability Improvement Using Polyelectrolyte Complex Nanoparticles Prepared in Produced Water," Energies, MDPI, vol. 10(4), pages 1-16, April.
    5. Shehzad Ahmed & Khaled Abdalla Elraies & Muhammad Rehan Hashmet & Mohamad Sahban Alnarabiji, 2018. "Empirical Modeling of the Viscosity of Supercritical Carbon Dioxide Foam Fracturing Fluid under Different Downhole Conditions," Energies, MDPI, vol. 11(4), pages 1-16, March.
    6. Vanessa Núñez-López & Ramón Gil-Egui & Seyyed A. Hosseini, 2019. "Environmental and Operational Performance of CO 2 -EOR as a CCUS Technology: A Cranfield Example with Dynamic LCA Considerations," Energies, MDPI, vol. 12(3), pages 1-15, January.
    7. Shehzad Ahmed & Khaled Abdalla Elraies & Muhammad Rehan Hashmet & Alvinda Sri Hanamertani, 2017. "Viscosity Models for Polymer Free CO 2 Foam Fracturing Fluid with the Effect of Surfactant Concentration, Salinity and Shear Rate," Energies, MDPI, vol. 10(12), pages 1-12, November.
    8. Hong He & Jingyu Fu & Baofeng Hou & Fuqing Yuan & Lanlei Guo & Zongyang Li & Qing You, 2018. "Investigation of Injection Strategy of Branched-Preformed Particle Gel/Polymer/Surfactant for Enhanced Oil Recovery after Polymer Flooding in Heterogeneous Reservoirs," Energies, MDPI, vol. 11(8), pages 1-17, July.
    9. Edwin A. Chukwudeme & Aly A. Hamouda, 2009. "Enhanced Oil Recovery (EOR) by Miscible CO 2 and Water Flooding of Asphaltenic and Non-Asphaltenic Oils," Energies, MDPI, vol. 2(3), pages 1-24, September.
    10. Shanfa Tang & Yahui Zheng & Weipeng Yang & Jiaxin Wang & Yingkai Fan & Jun Lu, 2018. "Experimental Study of Sulfonate Gemini Surfactants as Thickeners for Clean Fracturing Fluids," Energies, MDPI, vol. 11(11), pages 1-11, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Shahzad Kamal & Marwan Mohammed & Mohamed Mahmoud & Salaheldin Elkatatny, 2018. "Development of Chelating Agent-Based Polymeric Gel System for Hydraulic Fracturing," Energies, MDPI, vol. 11(7), pages 1-15, June.
    2. Xiankang Xin & Yiqiang Li & Gaoming Yu & Weiying Wang & Zhongzhi Zhang & Maolin Zhang & Wenli Ke & Debin Kong & Keliu Wu & Zhangxin Chen, 2017. "Non-Newtonian Flow Characteristics of Heavy Oil in the Bohai Bay Oilfield: Experimental and Simulation Studies," Energies, MDPI, vol. 10(11), pages 1-25, October.
    3. Zhengdong Lei & Yishan Liu & Rui Wang & Lei Li & Yuqi Liu & Yuanqing Zhang, 2022. "A Microfluidic Experiment on CO 2 Injection for Enhanced Oil Recovery in a Shale Oil Reservoir with High Temperature and Pressure," Energies, MDPI, vol. 15(24), pages 1-15, December.
    4. Ahmed Fatih Belhaj & Khaled Abdalla Elraies & Mohamad Sahban Alnarabiji & Juhairi Aris B M Shuhli & Syed Mohammad Mahmood & Lim Wan Ern, 2019. "Experimental Investigation of Surfactant Partitioning in Pre-CMC and Post-CMC Regimes for Enhanced Oil Recovery Application," Energies, MDPI, vol. 12(12), pages 1-15, June.
    5. Laura Aguado-Deblas & Jesús Hidalgo-Carrillo & Felipa M. Bautista & Carlos Luna & Juan Calero & Alejandro Posadillo & Antonio A. Romero & Diego Luna & Rafael Estévez, 2021. "Evaluation of Dimethyl Carbonate as Alternative Biofuel. Performance and Smoke Emissions of a Diesel Engine Fueled with Diesel/Dimethyl Carbonate/Straight Vegetable Oil Triple Blends," Sustainability, MDPI, vol. 13(4), pages 1-14, February.
    6. Wei Guo & Zhendong Wang & Youhong Sun & Xiaoshu Lü & Yuan Wang & Sunhua Deng & Qiang Li, 2020. "Effects of Packer Locations on Downhole Electric Heater Performance: Experimental Test and Economic Analysis," Energies, MDPI, vol. 13(2), pages 1-17, January.
    7. Dmitrii Pereponov & Michael Tarkhov & Desmond Batsa Dorhjie & Alexander Rykov & Ivan Filippov & Elena Zenova & Vladislav Krutko & Alexey Cheremisin & Evgeny Shilov, 2023. "Microfluidic Studies on Minimum Miscibility Pressure for n-Decane and CO 2," Energies, MDPI, vol. 16(13), pages 1-21, June.
    8. Vahid Tabrizy & Aly Hamouda, 2014. "Evaluation of Asphaltene Stability During CO2 Flooding at Different Miscible Conditions and Presence of Light Components," Energy and Environment Research, Canadian Center of Science and Education, vol. 4(1), pages 1-32, June.
    9. Yuan Zhang & Yuan Di & Yang Shi & Jinghong Hu, 2018. "Cyclic CH 4 Injection for Enhanced Oil Recovery in the Eagle Ford Shale Reservoirs," Energies, MDPI, vol. 11(11), pages 1-15, November.
    10. Wei, Bo & He, Xiaobiao & Li, Xin & Ju, Yiwen & Jin, Jun & Luo, Qiang, 2023. "Residual oil contents of dolomicrite and sandy dolomite tight oil reservoirs after CO2 huff and puff: An experimental study," Energy, Elsevier, vol. 275(C).
    11. Jianchao Cai & Zhien Zhang & Qinjun Kang & Harpreet Singh, 2019. "Recent Advances in Flow and Transport Properties of Unconventional Reservoirs," Energies, MDPI, vol. 12(10), pages 1-5, May.
    12. Ayomikun Bello & Anastasia Ivanova & Alexey Cheremisin, 2023. "A Comprehensive Review of the Role of CO 2 Foam EOR in the Reduction of Carbon Footprint in the Petroleum Industry," Energies, MDPI, vol. 16(3), pages 1-20, January.
    13. Tao Li & Ying Wang & Min Li & Jiahao Ji & Lin Chang & Zheming Wang, 2019. "Study on the Impacts of Capillary Number and Initial Water Saturation on the Residual Gas Distribution by NMR," Energies, MDPI, vol. 12(14), pages 1-15, July.
    14. Hanamertani, Alvinda Sri & Ahmed, Shehzad, 2021. "Probing the role of associative polymer on scCO2-Foam strength and rheology enhancement in bulk and porous media for improving oil displacement efficiency," Energy, Elsevier, vol. 228(C).
    15. Shehzad Ahmed & Khaled Abdalla Elraies & Muhammad Rehan Hashmet & Mohamad Sahban Alnarabiji, 2018. "Empirical Modeling of the Viscosity of Supercritical Carbon Dioxide Foam Fracturing Fluid under Different Downhole Conditions," Energies, MDPI, vol. 11(4), pages 1-16, March.
    16. Waxman, Andrew R. & Corcoran, Sean & Robison, Andrew & Leibowicz, Benjamin D. & Olmstead, Sheila, 2021. "Leveraging scale economies and policy incentives: Carbon capture, utilization & storage in Gulf clusters," Energy Policy, Elsevier, vol. 156(C).
    17. Evgeny Shilov & Alexey Cheremisin & Kirill Maksakov & Sergey Kharlanov, 2019. "Huff-n-Puff Experimental Studies of CO 2 with Heavy Oil," Energies, MDPI, vol. 12(22), pages 1-15, November.
    18. Hong He & Yuqiu Chen & Qun Yu & Xianli Wen & Haocheng Liu, 2019. "Optimization Design of Injection Strategy for Surfactant-Polymer Flooding Process in Heterogeneous Reservoir under Low Oil Prices," Energies, MDPI, vol. 12(19), pages 1-15, October.
    19. Omid Mosalman Haghighi & Ghasem Zargar & Abbas Khaksar Manshad & Muhammad Ali & Mohammad Ali Takassi & Jagar A. Ali & Alireza Keshavarz, 2020. "Effect of Environment-Friendly Non-Ionic Surfactant on Interfacial Tension Reduction and Wettability Alteration; Implications for Enhanced Oil Recovery," Energies, MDPI, vol. 13(15), pages 1-18, August.
    20. Oghare Victor Ogidiama & Tariq Shamim, 2021. "Assessment of CO2 capture technologies for CO2 utilization in enhanced oil recovery," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(3), pages 432-444, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:6:p:1163-:d:217133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.