IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i4p604-d205790.html
   My bibliography  Save this article

Optimal Economic and Emission Dispatch of a Microgrid with a Combined Heat and Power System

Author

Listed:
  • Liangce He

    (Key Lab of Power Electronics for Energy Conservation and Motor Drive of Hebei Province, Yanshan University, Qinhuangdao 066004, Hebei, China)

  • Zhigang Lu

    (Key Lab of Power Electronics for Energy Conservation and Motor Drive of Hebei Province, Yanshan University, Qinhuangdao 066004, Hebei, China)

  • Lili Pan

    (Cangzhou Power Supply Branch, State Grid Hebei Electric Power Co., Ltd., Cangzhou 061000, Hebei, China)

  • Hao Zhao

    (China Energy Engineering Group, Tianjin Electric Power Design Institute Co., Ltd., Tianjin 300400, China)

  • Xueping Li

    (Key Lab of Power Electronics for Energy Conservation and Motor Drive of Hebei Province, Yanshan University, Qinhuangdao 066004, Hebei, China)

  • Jiangfeng Zhang

    (School of Electrical and Data Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia)

Abstract

With the rapid development of the new concept of energy internet, electric power systems often need to be investigated together with thermal energy systems. Additionally, to reduce pollution from gas emissions, it is very important to study the economic and emission dispatch of integrated electrical and heating systems. Hence, this paper proposes a multi-objective optimization dispatch model for a microgrid (MG) with a combined heat and power (CHP) system. This CHP-based MG system consists of a CHP unit, a wind turbine, a PV system, a fuel cell, an electric boiler, an electric storage, and a heat storage. It can exchange electricity with the distribution network and exchange heat with the district heating network. Minimum economic cost and minimum environmental cost are considered as the two objectives for the operation of this CHP-based MG system. To solve the two objective optimization problem, the multi-objective bacterial colony chemotaxis algorithm is utilized to obtain the Pareto optimal solution set, and the optimal solution is chosen by the Technique for Order of Preference by Similarity to Ideal Solution method. Finally, numerical case studies demonstrate the effectiveness of proposed model and method for the optimal economic and emission dispatch of the CHP-based MG system.

Suggested Citation

  • Liangce He & Zhigang Lu & Lili Pan & Hao Zhao & Xueping Li & Jiangfeng Zhang, 2019. "Optimal Economic and Emission Dispatch of a Microgrid with a Combined Heat and Power System," Energies, MDPI, vol. 12(4), pages 1-19, February.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:604-:d:205790
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/4/604/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/4/604/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Zhengmao & Xu, Yan, 2018. "Optimal coordinated energy dispatch of a multi-energy microgrid in grid-connected and islanded modes," Applied Energy, Elsevier, vol. 210(C), pages 974-986.
    2. Kopanos, Georgios M. & Georgiadis, Michael C. & Pistikopoulos, Efstratios N., 2013. "Energy production planning of a network of micro combined heat and power generators," Applied Energy, Elsevier, vol. 102(C), pages 1522-1534.
    3. Jin, Xiaolong & Mu, Yunfei & Jia, Hongjie & Wu, Jianzhong & Xu, Xiandong & Yu, Xiaodan, 2016. "Optimal day-ahead scheduling of integrated urban energy systems," Applied Energy, Elsevier, vol. 180(C), pages 1-13.
    4. Martínez Ceseña, Eduardo A. & Good, Nicholas & Syrri, Angeliki L.A. & Mancarella, Pierluigi, 2018. "Techno-economic and business case assessment of multi-energy microgrids with co-optimization of energy, reserve and reliability services," Applied Energy, Elsevier, vol. 210(C), pages 896-913.
    5. Anvari-Moghaddam, Amjad & Rahimi-Kian, Ashkan & Mirian, Maryam S. & Guerrero, Josep M., 2017. "A multi-agent based energy management solution for integrated buildings and microgrid system," Applied Energy, Elsevier, vol. 203(C), pages 41-56.
    6. Anna, Petrenko, 2016. "Мaркування готової продукції як складова частина інформаційного забезпечення маркетингової діяльності підприємств овочепродуктового підкомплексу," Agricultural and Resource Economics: International Scientific E-Journal, Agricultural and Resource Economics: International Scientific E-Journal, vol. 2(1), March.
    7. Bustos, Cristian & Watts, David, 2017. "Novel methodology for microgrids in isolated communities: Electricity cost-coverage trade-off with 3-stage technology mix, dispatch & configuration optimizations," Applied Energy, Elsevier, vol. 195(C), pages 204-221.
    8. Li, Mengyu & Zhang, Xiongwen & Li, Guojun & Jiang, Chaoyang, 2016. "A feasibility study of microgrids for reducing energy use and GHG emissions in an industrial application," Applied Energy, Elsevier, vol. 176(C), pages 138-148.
    9. Monteiro, Eliseu & Moreira, Nuno Afonso & Ferreira, Sérgio, 2009. "Planning of micro-combined heat and power systems in the Portuguese scenario," Applied Energy, Elsevier, vol. 86(3), pages 290-298, March.
    10. Zhou, Kaile & Yang, Shanlin & Shao, Zhen, 2016. "Energy Internet: The business perspective," Applied Energy, Elsevier, vol. 178(C), pages 212-222.
    11. Adam, Alexandros & Fraga, Eric S. & Brett, Dan J.L., 2015. "Options for residential building services design using fuel cell based micro-CHP and the potential for heat integration," Applied Energy, Elsevier, vol. 138(C), pages 685-694.
    12. Jin, Ming & Feng, Wei & Liu, Ping & Marnay, Chris & Spanos, Costas, 2017. "MOD-DR: Microgrid optimal dispatch with demand response," Applied Energy, Elsevier, vol. 187(C), pages 758-776.
    13. Liu, Zifa & Chen, Yixiao & Zhuo, Ranqun & Jia, Hongjie, 2018. "Energy storage capacity optimization for autonomy microgrid considering CHP and EV scheduling," Applied Energy, Elsevier, vol. 210(C), pages 1113-1125.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eid Gul & Giorgio Baldinelli & Pietro Bartocci, 2022. "Energy Transition: Renewable Energy-Based Combined Heat and Power Optimization Model for Distributed Communities," Energies, MDPI, vol. 15(18), pages 1-18, September.
    2. Shuhei Yamano & Atsushi Akisawa, 2022. "Evaluation of an Additional Generator on the Economic Effect Based on a Load Sharing Optimization of Medium-Speed/High-Speed Diesel Generators in a Microgrid," Energies, MDPI, vol. 15(3), pages 1-17, January.
    3. Ali Sulaiman Alsagri & Abdulrahman A. Alrobaian, 2022. "Optimization of Combined Heat and Power Systems by Meta-Heuristic Algorithms: An Overview," Energies, MDPI, vol. 15(16), pages 1-34, August.
    4. Whei-Min Lin & Chung-Yuen Yang & Chia-Sheng Tu & Hsi-Shan Huang & Ming-Tang Tsai, 2019. "The Optimal Energy Dispatch of Cogeneration Systems in a Liberty Market," Energies, MDPI, vol. 12(15), pages 1-15, July.
    5. Víctor Sanz i López & Ramon Costa-Castelló & Carles Batlle, 2022. "Literature Review of Energy Management in Combined Heat and Power Systems Based on High-Temperature Proton Exchange Membrane Fuel Cells for Residential Comfort Applications," Energies, MDPI, vol. 15(17), pages 1-22, September.
    6. Lukas Kerpen & Achim Schmidt & Bernd Sankol, 2021. "Differentiating the Physical Optimum from the Exergetic Evaluation of a Methane Combustion Process," Energies, MDPI, vol. 14(12), pages 1-17, June.
    7. Yuxing Liu & Linjun Zeng & Jie Zeng & Zhenyi Yang & Na Li & Yuxin Li, 2023. "Scheduling Optimization of IEHS with Uncertainty of Wind Power and Operation Mode of CCP," Energies, MDPI, vol. 16(5), pages 1-17, February.
    8. Oracio I. Barbosa-Ayala & Jhon A. Montañez-Barrera & Cesar E. Damian-Ascencio & Adriana Saldaña-Robles & J. Arturo Alfaro-Ayala & Jose Alfredo Padilla-Medina & Sergio Cano-Andrade, 2020. "Solution to the Economic Emission Dispatch Problem Using Numerical Polynomial Homotopy Continuation," Energies, MDPI, vol. 13(17), pages 1-15, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Golpîra, Hêriş & Khan, Syed Abdul Rehman, 2019. "A multi-objective risk-based robust optimization approach to energy management in smart residential buildings under combined demand and supply uncertainty," Energy, Elsevier, vol. 170(C), pages 1113-1129.
    2. Zheng, Lingwei & Zhou, Xingqiu & Qiu, Qi & Yang, Lan, 2020. "Day-ahead optimal dispatch of an integrated energy system considering time-frequency characteristics of renewable energy source output," Energy, Elsevier, vol. 209(C).
    3. Zia, Muhammad Fahad & Elbouchikhi, Elhoussin & Benbouzid, Mohamed, 2018. "Microgrids energy management systems: A critical review on methods, solutions, and prospects," Applied Energy, Elsevier, vol. 222(C), pages 1033-1055.
    4. Dimitra G. Kyriakou & Fotios D. Kanellos, 2022. "Optimal Operation of Microgrids Comprising Large Building Prosumers and Plug-in Electric Vehicles Integrated into Active Distribution Networks," Energies, MDPI, vol. 15(17), pages 1-26, August.
    5. Yeon-Ju Choi & Byeong-Chan Oh & Moses Amoasi Acquah & Dong-Min Kim & Sung-Yul Kim, 2021. "Optimal Operation of a Hybrid Power System as an Island Microgrid in South-Korea," Sustainability, MDPI, vol. 13(9), pages 1-18, April.
    6. Ahmadi, Seyed Ehsan & Sadeghi, Delnia & Marzband, Mousa & Abusorrah, Abdullah & Sedraoui, Khaled, 2022. "Decentralized bi-level stochastic optimization approach for multi-agent multi-energy networked micro-grids with multi-energy storage technologies," Energy, Elsevier, vol. 245(C).
    7. Zhu, Jizhong & Dong, Hanjiang & Zheng, Weiye & Li, Shenglin & Huang, Yanting & Xi, Lei, 2022. "Review and prospect of data-driven techniques for load forecasting in integrated energy systems," Applied Energy, Elsevier, vol. 321(C).
    8. Mehdizadeh, Ali & Taghizadegan, Navid & Salehi, Javad, 2018. "Risk-based energy management of renewable-based microgrid using information gap decision theory in the presence of peak load management," Applied Energy, Elsevier, vol. 211(C), pages 617-630.
    9. Wei, Jingdong & Zhang, Yao & Wang, Jianxue & Cao, Xiaoyu & Khan, Muhammad Armoghan, 2020. "Multi-period planning of multi-energy microgrid with multi-type uncertainties using chance constrained information gap decision method," Applied Energy, Elsevier, vol. 260(C).
    10. Liu, Yixin & Guo, Li & Wang, Chengshan, 2018. "A robust operation-based scheduling optimization for smart distribution networks with multi-microgrids," Applied Energy, Elsevier, vol. 228(C), pages 130-140.
    11. Asensio, F.J. & San Martín, J.I. & Zamora, I. & Oñederra, O., 2018. "Model for optimal management of the cooling system of a fuel cell-based combined heat and power system for developing optimization control strategies," Applied Energy, Elsevier, vol. 211(C), pages 413-430.
    12. Yan, Zhe & Zhang, Yongming & Liang, Runqi & Jin, Wenrui, 2020. "An allocative method of hybrid electrical and thermal energy storage capacity for load shifting based on seasonal difference in district energy planning," Energy, Elsevier, vol. 207(C).
    13. Yang, Xiaohui & Chen, Zaixing & Huang, Xin & Li, Ruixin & Xu, Shaoping & Yang, Chunsheng, 2021. "Robust capacity optimization methods for integrated energy systems considering demand response and thermal comfort," Energy, Elsevier, vol. 221(C).
    14. Shen, Lu & Dou, Xiaobo & Long, Huan & Li, Chen & Chen, Kang & Zhou, Ji, 2021. "A collaborative voltage optimization utilizing flexibility of community heating systems for high PV penetration," Energy, Elsevier, vol. 232(C).
    15. Wang, Sheng & Shao, Changzheng & Ding, Yi & Yan, Jinyue, 2019. "Operational reliability of multi-energy customers considering service-based self-scheduling," Applied Energy, Elsevier, vol. 254(C).
    16. Fontenot, Hannah & Dong, Bing, 2019. "Modeling and control of building-integrated microgrids for optimal energy management – A review," Applied Energy, Elsevier, vol. 254(C).
    17. Ge, Yi & Han, Jitian & Ma, Qingzhao & Feng, Jiahui, 2022. "Optimal configuration and operation analysis of solar-assisted natural gas distributed energy system with energy storage," Energy, Elsevier, vol. 246(C).
    18. Faran Asghar & Adnan Zahid & Muhammad Imtiaz Hussain & Furqan Asghar & Waseem Amjad & Jun-Tae Kim, 2022. "A Novel Solution for Optimized Energy Management Systems Comprising an AC/DC Hybrid Microgrid System for Industries," Sustainability, MDPI, vol. 14(14), pages 1-19, July.
    19. Hong, Bowen & Zhang, Weitong & Zhou, Yue & Chen, Jian & Xiang, Yue & Mu, Yunfei, 2018. "Energy-Internet-oriented microgrid energy management system architecture and its application in China," Applied Energy, Elsevier, vol. 228(C), pages 2153-2164.
    20. de la Hoz, Jordi & Martín, Helena & Alonso, Alex & Carolina Luna, Adriana & Matas, José & Vasquez, Juan C. & Guerrero, Josep M., 2019. "Regulatory-framework-embedded energy management system for microgrids: The case study of the Spanish self-consumption scheme," Applied Energy, Elsevier, vol. 251(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:604-:d:205790. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.