IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i22p4278-d285396.html
   My bibliography  Save this article

Cooling Benefits of an Extensive Green Roof and Sensitivity Analysis of Its Parameters in Subtropical Areas

Author

Listed:
  • Yu Zhang

    (School of Chemistry and Chemical Engineering, State Key Lab of Subtropical Building Science, South China University of Technology, Guangzhou 510641, China)

  • Lei Zhang

    (School of Architecture, State Key Lab of Subtropical Building Science, South China University of Technology, Guangzhou 510641, China)

  • Luyao Ma

    (School of Architecture, State Key Lab of Subtropical Building Science, South China University of Technology, Guangzhou 510641, China)

  • Qinglin Meng

    (School of Architecture, State Key Lab of Subtropical Building Science, South China University of Technology, Guangzhou 510641, China)

  • Peng Ren

    (School of Architecture, State Key Lab of Subtropical Building Science, South China University of Technology, Guangzhou 510641, China)

Abstract

The present study aims to further demonstrate the cooling benefits of an extensive green roof (EGR) and fill the gap existing in the literature in terms of a sensitivity analysis of an EGR, especially in subtropical areas. First, onsite measurements were performed. The results indicated that the peak air temperatures in the chamber with the EGR were 4.0 °C and 1.9 °C lower, respectively, compared to those in the chamber with a bare roof on sunny and rainy days. Moreover, the EGR decreased the daily electricity consumption from air conditioning by up to 16.7% on sunny days and 6.7% on cloudy days. Second, the measured values were employed to validate the green roof module (GRM) in EnergyPlus. The results demonstrated that the GRM yielded accurate results in quantifying the cooling benefits of the EGR. Finally, we selected 16 factors of the EGR, each with four levels, to perform the sensitivity analysis. Range and variance analyses revealed that the factors that most significantly impacted the EGR performance were the R -value of roof construction, substrate (soil) thickness, the thermal conductivity of dry substrate, the leaf area index, leaf emissivity, and the solar absorptance of the substrate. These factors contributed 90.8% to the performance index.

Suggested Citation

  • Yu Zhang & Lei Zhang & Luyao Ma & Qinglin Meng & Peng Ren, 2019. "Cooling Benefits of an Extensive Green Roof and Sensitivity Analysis of Its Parameters in Subtropical Areas," Energies, MDPI, vol. 12(22), pages 1-22, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4278-:d:285396
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/22/4278/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/22/4278/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhao, Peitao & Ge, Shifu & Yoshikawa, Kunio, 2013. "An orthogonal experimental study on solid fuel production from sewage sludge by employing steam explosion," Applied Energy, Elsevier, vol. 112(C), pages 1213-1221.
    2. Jim, C.Y., 2015. "Diurnal and partitioned heat-flux patterns of coupled green-building roof systems," Renewable Energy, Elsevier, vol. 81(C), pages 262-274.
    3. Aaswath P. Raman & Marc Abou Anoma & Linxiao Zhu & Eden Rephaeli & Shanhui Fan, 2014. "Passive radiative cooling below ambient air temperature under direct sunlight," Nature, Nature, vol. 515(7528), pages 540-544, November.
    4. Stefano Cascone, 2019. "Green Roof Design: State of the Art on Technology and Materials," Sustainability, MDPI, vol. 11(11), pages 1-27, May.
    5. Jim, C.Y., 2014. "Passive warming of indoor space induced by tropical green roof in winter," Energy, Elsevier, vol. 68(C), pages 272-282.
    6. Akbari, H, 2003. "Measured energy savings from the application of reflective roofs in two small non-residential buildings," Energy, Elsevier, vol. 28(9), pages 953-967.
    7. Jim, C.Y., 2014. "Air-conditioning energy consumption due to green roofs with different building thermal insulation," Applied Energy, Elsevier, vol. 128(C), pages 49-59.
    8. Lilliana L.H. Peng & C. Y. Jim, 2013. "Green-Roof Effects on Neighborhood Microclimate and Human Thermal Sensation," Energies, MDPI, vol. 6(2), pages 1-21, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mungur, Maheshsingh & Poorun, Yashna & Juggurnath, Diksha & Ruhomally, Yusra Bibi & Rughooputh, Reshma & Dauhoo, Muhammad Zaid & Khoodaruth, Abdel & Shamachurn, Heman & Gooroochurn, Mahendra & Boodia,, 2020. "A numerical and experimental investigation of the effectiveness of green roofs in tropical environments: The case study of Mauritius in mid and late winter," Energy, Elsevier, vol. 202(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jim, C.Y., 2015. "Cold-season solar input and ambivalent thermal behavior brought by climber greenwalls," Energy, Elsevier, vol. 90(P1), pages 926-938.
    2. Bevilacqua, Piero, 2021. "The effectiveness of green roofs in reducing building energy consumptions across different climates. A summary of literature results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    3. Sharifi, Ayyoob & Yamagata, Yoshiki, 2016. "Principles and criteria for assessing urban energy resilience: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1654-1677.
    4. He, Yang & Yu, Hang & Ozaki, Akihito & Dong, Nannan & Zheng, Shiling, 2017. "Influence of plant and soil layer on energy balance and thermal performance of green roof system," Energy, Elsevier, vol. 141(C), pages 1285-1299.
    5. Lilliana L. H. Peng & C. Y. Jim, 2015. "Seasonal and Diurnal Thermal Performance of a Subtropical Extensive Green Roof: The Impacts of Background Weather Parameters," Sustainability, MDPI, vol. 7(8), pages 1-16, August.
    6. Xiao, Zhihua & Yuan, Xingzhong & Jiang, Longbo & Chen, Xiaohong & Li, Hui & Zeng, Guangming & Leng, Lijian & Wang, Hou & Huang, Huajun, 2015. "Energy recovery and secondary pollutant emission from the combustion of co-pelletized fuel from municipal sewage sludge and wood sawdust," Energy, Elsevier, vol. 91(C), pages 441-450.
    7. Marco Noro & Simone Mancin & Roger Riehl, 2021. "Energy and Economic Sustainability of a Trigeneration Solar System Using Radiative Cooling in Mediterranean Climate," Sustainability, MDPI, vol. 13(20), pages 1-18, October.
    8. Okey Francis Obi & Temitope Olumide Olugbade & Joseph Ifeolu Orisaleye & Ralf Pecenka, 2023. "Solid Biofuel Production from Biomass: Technologies, Challenges, and Opportunities for Its Commercial Production in Nigeria," Energies, MDPI, vol. 16(24), pages 1-22, December.
    9. Yunfang Jiang & Danran Song & Tiemao Shi & Xuemei Han, 2018. "Adaptive Analysis of Green Space Network Planning for the Cooling Effect of Residential Blocks in Summer: A Case Study in Shanghai," Sustainability, MDPI, vol. 10(9), pages 1-25, September.
    10. Yu, Zhaowu & Chen, Tingting & Yang, Gaoyuan & Sun, Ranhao & Xie, Wei & Vejre, Henrik, 2020. "Quantifying seasonal and diurnal contributions of urban landscapes to heat energy dynamics," Applied Energy, Elsevier, vol. 264(C).
    11. Tso, C.Y. & Chan, K.C. & Chao, Christopher Y.H., 2017. "A field investigation of passive radiative cooling under Hong Kong’s climate," Renewable Energy, Elsevier, vol. 106(C), pages 52-61.
    12. Jamei, E. & Ossen, D.R. & Seyedmahmoudian, M. & Sandanayake, M. & Stojcevski, A. & Horan, B., 2020. "Urban design parameters for heat mitigation in tropics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    13. Vera, Sergio & Pinto, Camilo & Tabares-Velasco, Paulo Cesar & Bustamante, Waldo, 2018. "A critical review of heat and mass transfer in vegetative roof models used in building energy and urban enviroment simulation tools," Applied Energy, Elsevier, vol. 232(C), pages 752-764.
    14. Liu, Junwei & Zhang, Ji & Zhang, Debao & Jiao, Shifei & Xing, Jincheng & Tang, Huajie & Zhang, Ying & Li, Shuai & Zhou, Zhihua & Zuo, Jian, 2020. "Sub-ambient radiative cooling with wind cover," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    15. George M. Stavrakakis & Dimitris Al. Katsaprakakis & Markos Damasiotis, 2021. "Basic Principles, Most Common Computational Tools, and Capabilities for Building Energy and Urban Microclimate Simulations," Energies, MDPI, vol. 14(20), pages 1-41, October.
    16. Xueke Wu & Jinlei Li & Fei Xie & Xun-En Wu & Siming Zhao & Qinyuan Jiang & Shiliang Zhang & Baoshun Wang & Yunrui Li & Di Gao & Run Li & Fei Wang & Ya Huang & Yanlong Zhao & Yingying Zhang & Wei Li & , 2024. "A dual-selective thermal emitter with enhanced subambient radiative cooling performance," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    17. Anna Laura Pisello, 2015. "Experimental Analysis of Cool Traditional Solar Shading Systems for Residential Buildings," Energies, MDPI, vol. 8(3), pages 1-14, March.
    18. Lianhu Xiong & Yun Wei & Chuanliang Chen & Xin Chen & Qiang Fu & Hua Deng, 2023. "Thin lamellar films with enhanced mechanical properties for durable radiative cooling," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    19. Zhao, Peitao & Chen, Hongfang & Ge, Shifu & Yoshikawa, Kunio, 2013. "Effect of the hydrothermal pretreatment for the reduction of NO emission from sewage sludge combustion," Applied Energy, Elsevier, vol. 111(C), pages 199-205.
    20. Alberto Speroni & Andrea Giovanni Mainini & Andrea Zani & Riccardo Paolini & Tommaso Pagnacco & Tiziana Poli, 2022. "Experimental Assessment of the Reflection of Solar Radiation from Façades of Tall Buildings to the Pedestrian Level," Sustainability, MDPI, vol. 14(10), pages 1-29, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4278-:d:285396. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.