IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i17p3239-d260000.html
   My bibliography  Save this article

Fault-Tolerant Control of Doubly-Fed Wind Turbine Generation Systems under Sensor Fault Conditions

Author

Listed:
  • Guodong You

    (College of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin 300222, China)

  • Tao Xu

    (College of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin 300222, China)

  • Honglin Su

    (College of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin 300222, China)

  • Xiaoxin Hou

    (College of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin 300222, China)

  • Xue Wang

    (College of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin 300222, China)

  • Chengxin Fang

    (College of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin 300222, China)

  • Jisheng Li

    (College of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin 300222, China)

Abstract

This paper studies the fault-tolerant control problem of uncertain doubly-fed wind turbine generation systems with sensor faults. Considering the uncertainty of the system, a fault-tolerant control strategy based on a T-S fuzzy observer is proposed. The fuzzy observer is established based on the T-S fuzzy model of the uncertain nonlinear system. According to the comparison and analysis of residual between the state estimation of the fuzzy observer output and the measured value of the real sensor, a fault detection and isolation (FDI) based on T-S fuzzy observer is designed. Then by using a Parallel Distributed Compensation (PDC) method we design the robust fuzzy controller. Finally, the necessary and sufficient conditions for the stability of the closed-loop system are proved by quoting Lyapunov stability theory. The simulation results verify the effectiveness of the proposed control method.

Suggested Citation

  • Guodong You & Tao Xu & Honglin Su & Xiaoxin Hou & Xue Wang & Chengxin Fang & Jisheng Li, 2019. "Fault-Tolerant Control of Doubly-Fed Wind Turbine Generation Systems under Sensor Fault Conditions," Energies, MDPI, vol. 12(17), pages 1-14, August.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:17:p:3239-:d:260000
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/17/3239/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/17/3239/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pursiheimo, Esa & Holttinen, Hannele & Koljonen, Tiina, 2019. "Inter-sectoral effects of high renewable energy share in global energy system," Renewable Energy, Elsevier, vol. 136(C), pages 1119-1129.
    2. Caixia Gao & Mengzhen Gao & Jikai Si & Yihua Hu & Chun Gan, 2019. "A Novel Direct-Drive Permanent Magnet Synchronous Motor with Toroidal Windings," Energies, MDPI, vol. 12(3), pages 1-14, January.
    3. Gálvez-Carrillo, Manuel & Kinnaert, Michel, 2011. "Sensor fault detection and isolation in doubly-fed induction generators accounting for parameter variations," Renewable Energy, Elsevier, vol. 36(5), pages 1447-1457.
    4. Jia Liu & Jizu Li & Xilong Yao, 2019. "The Economic Effects of the Development of the Renewable Energy Industry in China," Energies, MDPI, vol. 12(9), pages 1-18, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hamed Habibi & Hamed Rahimi Nohooji & Ian Howard & Silvio Simani, 2019. "Fault-Tolerant Neuro Adaptive Constrained Control of Wind Turbines for Power Regulation with Uncertain Wind Speed Variation," Energies, MDPI, vol. 12(24), pages 1-33, December.
    2. Zbigniew Kłosowski & Sławomir Cieślik, 2020. "Real-Time Simulation of Power Conversion in Doubly Fed Induction Machine," Energies, MDPI, vol. 13(3), pages 1-22, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kamal, E. & Aitouche, A., 2013. "Robust fault tolerant control of DFIG wind energy systems with unknown inputs," Renewable Energy, Elsevier, vol. 56(C), pages 2-15.
    2. Shahnazi, Rouhollah & Dehghan Shabani, Zahra, 2020. "Do renewable energy production spillovers matter in the EU?," Renewable Energy, Elsevier, vol. 150(C), pages 786-796.
    3. Hongli Liu & Xiaoyu Yan & Jinhua Cheng & Jun Zhang & Yan Bu, 2021. "Driving Factors for the Spatiotemporal Heterogeneity in Technical Efficiency of China’s New Energy Industry," Energies, MDPI, vol. 14(14), pages 1-21, July.
    4. Shuangshuang Guo & Bo Zhao & Cunshan Zhang & Binglin Lu & Yukang Chu & Peng Yang, 2022. "Research on a Limit Analytical Method for a Low-Speed Micro Permanent Magnet Torque Motor with Back Winding," Energies, MDPI, vol. 15(13), pages 1-20, June.
    5. Jåstad, Eirik Ogner & Bolkesjø, Torjus Folsland, 2023. "Modelling emission and land-use impacts of altered bioenergy use in the future energy system," Energy, Elsevier, vol. 265(C).
    6. Yue, Xiufeng & Patankar, Neha & Decarolis, Joseph & Chiodi, Alessandro & Rogan, Fionn & Deane, J.P. & O’Gallachoir, Brian, 2020. "Least cost energy system pathways towards 100% renewable energy in Ireland by 2050," Energy, Elsevier, vol. 207(C).
    7. Doğan, Buhari & Chu, Lan Khanh & Ghosh, Sudeshna & Diep Truong, Huong Hoang & Balsalobre-Lorente, Daniel, 2022. "How environmental taxes and carbon emissions are related in the G7 economies?," Renewable Energy, Elsevier, vol. 187(C), pages 645-656.
    8. Misconel, Steffi & Zöphel, Christoph & Möst, Dominik, 2021. "Assessing the value of demand response in a decarbonized energy system – A large-scale model application," Applied Energy, Elsevier, vol. 299(C).
    9. Palomba, Valeria & Dino, Giuseppe E. & Frazzica, Andrea, 2020. "Coupling sorption and compression chillers in hybrid cascade layout for efficient exploitation of renewables: Sizing, design and optimization," Renewable Energy, Elsevier, vol. 154(C), pages 11-28.
    10. Chofreh, Abdoulmohammad Gholamzadeh & Goni, Feybi Ariani & Klemeš, Jiří Jaromír & Seyed Moosavi, Seyed Mohsen & Davoudi, Mehdi & Zeinalnezhad, Masoomeh, 2021. "Covid-19 shock: Development of strategic management framework for global energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    11. Nagatomo, Yu & Ozawa, Akito & Kudoh, Yuki & Hondo, Hiroki, 2021. "Impacts of employment in power generation on renewable-based energy systems in Japan— Analysis using an energy system model," Energy, Elsevier, vol. 226(C).
    12. Jianquan Guo & Xinwei Cai, 2023. "Do transportation and tourism development really contribute to China's economy? evidence from renewable and non-renewable energy consumption," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 7189-7214, July.
    13. Shi, Fengming & Patton, Ron, 2015. "An active fault tolerant control approach to an offshore wind turbine model," Renewable Energy, Elsevier, vol. 75(C), pages 788-798.
    14. Bogdanov, Dmitrii & Ram, Manish & Aghahosseini, Arman & Gulagi, Ashish & Oyewo, Ayobami Solomon & Child, Michael & Caldera, Upeksha & Sadovskaia, Kristina & Farfan, Javier & De Souza Noel Simas Barbos, 2021. "Low-cost renewable electricity as the key driver of the global energy transition towards sustainability," Energy, Elsevier, vol. 227(C).
    15. Lopez, Gabriel & Aghahosseini, Arman & Child, Michael & Khalili, Siavash & Fasihi, Mahdi & Bogdanov, Dmitrii & Breyer, Christian, 2022. "Impacts of model structure, framework, and flexibility on perspectives of 100% renewable energy transition decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    16. KS Rajmohan & C Ramya & Sunita Varjani, 2021. "Trends and advances in bioenergy production and sustainable solid waste management," Energy & Environment, , vol. 32(6), pages 1059-1085, September.
    17. Bellocchi, S. & De Iulio, R. & Guidi, G. & Manno, M. & Nastasi, B. & Noussan, M. & Prina, M.G. & Roberto, R., 2020. "Analysis of smart energy system approach in local alpine regions - A case study in Northern Italy," Energy, Elsevier, vol. 202(C).
    18. Aghahosseini, Arman & Solomon, A.A. & Breyer, Christian & Pregger, Thomas & Simon, Sonja & Strachan, Peter & Jäger-Waldau, Arnulf, 2023. "Energy system transition pathways to meet the global electricity demand for ambitious climate targets and cost competitiveness," Applied Energy, Elsevier, vol. 331(C).
    19. Tan, Raymond R. & Aviso, Kathleen B. & Foo, Dominic C.Y. & Lee, Jui-Yuan & Ubando, Aristotle T., 2019. "Optimal synthesis of negative emissions polygeneration systems with desalination," Energy, Elsevier, vol. 187(C).
    20. Lijing Zhang & Shuke Fu & Jiali Tian & Jiachao Peng, 2022. "A Review of Energy Industry Chain and Energy Supply Chain," Energies, MDPI, vol. 15(23), pages 1-21, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:17:p:3239-:d:260000. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.