IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i16p3047-d255667.html
   My bibliography  Save this article

Economic Analysis of HRES Systems with Energy Storage During Grid Interruptions and Curtailment in Tamil Nadu, India: A Hybrid RBFNOEHO Technique

Author

Listed:
  • Karunakaran Venkatesan

    (Department of Electrical and Electronics Engineering, College of Engineering, Anna University, Chennai 600025, Tamil Nadu, India)

  • Uma Govindarajan

    (Department of Electrical and Electronics Engineering, College of Engineering, Anna University, Chennai 600025, Tamil Nadu, India)

  • Padmanathan Kasinathan

    (Department of Electrical and Electronics Engineering, Agni College of Technology, Thalambur, Chennai, Tamil Nadu 600130, India)

  • Sanjeevikumar Padmanaban

    (Center for Bioenergy and Green Engineering, Department of Energy Technology, Aalborg University, 6700 Esbjerg, Denmark)

  • Jens Bo Holm-Nielsen

    (Center for Bioenergy and Green Engineering, Department of Energy Technology, Aalborg University, 6700 Esbjerg, Denmark)

  • Zbigniew Leonowicz

    (Faculty of Electrical Engineering, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50370 Wroclaw, Poland)

Abstract

This work presents an economic analysis of a hybrid renewable energy source (HRES) integrated with an energy storage system (ESS) using batteries with a new proposed strategy. Here, the HRES system comprises wind turbines (WT) and a photovoltaic (PV) system. The hybrid WT, PV and energy storage system with battery offer several benefits, in particular, high wind generation utilization rate, and optimal generation for meeting supply-demand gaps. The real recorded data of various parameters of a 22 KV hybrid ‘Regen’ feeder of 110/22 KV Vagarai Substation of TANTRANSCO in Palani of Tamilnadu in India was gathered, studied for the entire year of 2018, and utilized in this paper. The proposed strategy is the hybridization of two algorithms called Radial Basis Function Neural Network (RBFNN) and Oppositional Elephant Herding Optimization (OEHO) named the RBFNOEHO technique. With the help of RBFNN, the continuous load demand required for the HRES and be tracked. OEHO is used to optimize a perfect combination of HRES with the predicted load demand. The aim of the proposed hybrid RBFNOEHO is to study the cost comparison of the HRES system with the existing conventional base method, energy storage method (ESS) with batteries and with HOMER. The proposed Hybrid RBFNOEHO technique is evaluated by comparing it with the other techniques; it is found that the proposed method yields a more optimal solution than the other techniques.

Suggested Citation

  • Karunakaran Venkatesan & Uma Govindarajan & Padmanathan Kasinathan & Sanjeevikumar Padmanaban & Jens Bo Holm-Nielsen & Zbigniew Leonowicz, 2019. "Economic Analysis of HRES Systems with Energy Storage During Grid Interruptions and Curtailment in Tamil Nadu, India: A Hybrid RBFNOEHO Technique," Energies, MDPI, vol. 12(16), pages 1-26, August.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:16:p:3047-:d:255667
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/16/3047/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/16/3047/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Heard, B.P. & Brook, B.W. & Wigley, T.M.L. & Bradshaw, C.J.A., 2017. "Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1122-1133.
    2. Islam, Md. Rabiul & Sarker, Pejush Chandra & Ghosh, Subarto Kumar, 2017. "Prospect and advancement of solar irrigation in Bangladesh: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 406-422.
    3. Chen, Falin & Lu, Shyi-Min & Wang, Eric & Tseng, Kuo-Tung, 2010. "Renewable energy in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 2029-2038, September.
    4. Panwar, N.L. & Kaushik, S.C. & Kothari, Surendra, 2011. "Role of renewable energy sources in environmental protection: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1513-1524, April.
    5. Omer, Abdeen Mustafa, 2008. "Energy, environment and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2265-2300, December.
    6. Dincer, Ibrahim, 2000. "Renewable energy and sustainable development: a crucial review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 4(2), pages 157-175, June.
    7. Padmanathan K. & Uma Govindarajan & Vigna K. Ramachandaramurthy & Sudar Oli Selvi T., 2017. "Multiple Criteria Decision Making (MCDM) Based Economic Analysis of Solar PV System with Respect to Performance Investigation for Indian Market," Sustainability, MDPI, vol. 9(5), pages 1-19, May.
    8. Dai, Juchuan & Yang, Xin & Wen, Li, 2018. "Development of wind power industry in China: A comprehensive assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 156-164.
    9. Zhao, Haoran & Wu, Qiuwei & Hu, Shuju & Xu, Honghua & Rasmussen, Claus Nygaard, 2015. "Review of energy storage system for wind power integration support," Applied Energy, Elsevier, vol. 137(C), pages 545-553.
    10. Chen, Falin & Lu, Shyi-Min & Tseng, Kuo-Tung & Lee, Si-Chen & Wang, Eric, 2010. "Assessment of renewable energy reserves in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2511-2528, December.
    11. Kim, Sehyun & Lee, Hyunjae & Kim, Heejin & Jang, Dong-Hwan & Kim, Hyun-Jin & Hur, Jin & Cho, Yoon-Sung & Hur, Kyeon, 2018. "Improvement in policy and proactive interconnection procedure for renewable energy expansion in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 150-162.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mariusz Niekurzak & Wojciech Lewicki & Wojciech Drożdż & Paweł Miązek, 2022. "Measures for Assessing the Effectiveness of Investments for Electricity and Heat Generation from the Hybrid Cooperation of a Photovoltaic Installation with a Heat Pump on the Example of a Household," Energies, MDPI, vol. 15(16), pages 1-20, August.
    2. Thirunavukkarasu, M. & Sawle, Yashwant & Lala, Himadri, 2023. "A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    3. Alberto Arellanes & Ciro Nuñez & Nancy Visairo & Andres A. Valdez-Fernandez, 2022. "An Improvement of Holistic Control Tuning for Reducing Energy Consumption in Seamless Transitions for a BESS Grid-Connected Converter," Energies, MDPI, vol. 15(21), pages 1-23, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bilgili, Mehmet & Ozbek, Arif & Sahin, Besir & Kahraman, Ali, 2015. "An overview of renewable electric power capacity and progress in new technologies in the world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 323-334.
    2. deLlano-Paz, Fernando & Calvo-Silvosa, Anxo & Iglesias Antelo, Susana & Soares, Isabel, 2015. "The European low-carbon mix for 2030: The role of renewable energy sources in an environmentally and socially efficient approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 49-61.
    3. Avri Eitan & Gillad Rosen & Lior Herman & Itay Fishhendler, 2020. "Renewable Energy Entrepreneurs: A Conceptual Framework," Energies, MDPI, vol. 13(10), pages 1-23, May.
    4. Sabina Scarpellini & José Ángel Gimeno & Pilar Portillo-Tarragona & Eva Llera-Sastresa, 2021. "Financial Resources for the Investments in Renewable Self-Consumption in a Circular Economy Framework," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    5. Karytsas, Spyridon & Theodoropoulou, Helen, 2014. "Public awareness and willingness to adopt ground source heat pumps for domestic heating and cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 49-57.
    6. Berk, Istemi & Yetkiner, Hakan, 2014. "Energy prices and economic growth in the long run: Theory and evidence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 228-235.
    7. deLlano-Paz, Fernando & Calvo-Silvosa, Anxo & Antelo, Susana Iglesias & Soares, Isabel, 2017. "Energy planning and modern portfolio theory: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 636-651.
    8. Zhao, Peitao & Shen, Yafei & Ge, Shifu & Chen, Zhenqian & Yoshikawa, Kunio, 2014. "Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment," Applied Energy, Elsevier, vol. 131(C), pages 345-367.
    9. Karatayev, Marat & Clarke, Michèle L., 2016. "A review of current energy systems and green energy potential in Kazakhstan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 491-504.
    10. Murshed, Muntasir, 2019. "Trade Liberalization Policies and Renewable Energy Transition in Low and Middle-Income Countries? An Instrumental Variable Approach," MPRA Paper 97075, University Library of Munich, Germany.
    11. Feng, Chun-Chiang & Chang, Kuei-Feng & Lin, Jin-Xu & Lee, Tsung-Chen & Lin, Shih-Mo, 2022. "Toward green transition in the post Paris Agreement era: The case of Taiwan," Energy Policy, Elsevier, vol. 165(C).
    12. Suberu, Mohammed Yekini & Mustafa, Mohd Wazir & Bashir, Nouruddeen & Muhamad, Nor Asiah & Mokhtar, Ahmad Safawi, 2013. "Power sector renewable energy integration for expanding access to electricity in sub-Saharan Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 630-642.
    13. Farihan Mohamad & Jiashen Teh & Ching-Ming Lai & Liang-Rui Chen, 2018. "Development of Energy Storage Systems for Power Network Reliability: A Review," Energies, MDPI, vol. 11(9), pages 1-19, August.
    14. Burgaç, Alper & Yavuz, Hakan, 2019. "Fuzzy Logic based hybrid type control implementation of a heaving wave energy converter," Energy, Elsevier, vol. 170(C), pages 1202-1214.
    15. He, Pan & Veronesi, Marcella, 2017. "Personality traits and renewable energy technology adoption: A policy case study from China," Energy Policy, Elsevier, vol. 107(C), pages 472-479.
    16. Shih-Chieh Huang & Shang-Lien Lo & Yen-Ching Lin, 2013. "To Re-Explore the Causality between Barriers to Renewable Energy Development: A Case Study of Wind Energy," Energies, MDPI, vol. 6(9), pages 1-24, August.
    17. Motasemi, F. & Afzal, Muhammad T., 2013. "A review on the microwave-assisted pyrolysis technique," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 317-330.
    18. Koua, Blaise K. & Koffi, Paul Magloire E. & Gbaha, Prosper & Touré, Siaka, 2015. "Present status and overview of potential of renewable energy in Cote d’Ivoire," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 907-914.
    19. Neeraj Sharma & Rajat Agrawal, 2017. "Locating a Wind Energy Project: A Case of a Leading Oil and Gas Producer in India," Vision, , vol. 21(2), pages 172-194, June.
    20. Lu, Shyi-Min & Huang, May-Yao & Su, Pu-Ti & Tseng, Kuo-Tung & Chen, Falin, 2013. "Development strategy of green energy industry for Taipei—A modern medium-sized city," Energy Policy, Elsevier, vol. 62(C), pages 484-492.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:16:p:3047-:d:255667. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.