IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i12p2394-d241895.html
   My bibliography  Save this article

Tailoring Ni and Sr 2 Mg 0.25 Ni 0.75 MoO 6−δ Cermet Compositions for Designing the Fuel Electrodes of Solid Oxide Electrochemical Cells

Author

Listed:
  • Lubov S. Skutina

    (Laboratory of Electrochemical Devices Based on Solid Oxide Proton Electrolytes, Institute of High Temperature Electrochemistry, 620137 Yekaterinburg, Russia
    Ural Federal University, 620002 Yekaterinburg, Russia)

  • Aleksey A. Vylkov

    (Laboratory of Electrochemical Devices Based on Solid Oxide Proton Electrolytes, Institute of High Temperature Electrochemistry, 620137 Yekaterinburg, Russia
    Ural Federal University, 620002 Yekaterinburg, Russia)

  • Dmitry K. Kuznetsov

    (Ural Federal University, 620002 Yekaterinburg, Russia)

  • Dmitry A. Medvedev

    (Laboratory of Electrochemical Devices Based on Solid Oxide Proton Electrolytes, Institute of High Temperature Electrochemistry, 620137 Yekaterinburg, Russia
    Ural Federal University, 620002 Yekaterinburg, Russia)

  • Vladimir Ya. Shur

    (Ural Federal University, 620002 Yekaterinburg, Russia)

Abstract

The design of new electrode materials for solid oxide electrochemical cells, which are stable against redox processes as well as exhibiting carbon/sulphur tolerance and high electronic conductivity, is a matter of considerable current interest as a means of overcoming the disadvantages of traditional Ni-containing cermets. In the present work, composite materials having the general formula (1−x)Sr 2 Mg 0.25 Ni 0.75 MoO 6−δ + xNiO (where x = 0, 15, 30, 50, 70 and 85 mol.%) were successfully prepared to be utilised in solid oxide fuel cells. A detailed investigation of the thermal, electrical, and microstructural properties of these composites, along with their phase stability in oxidising and reducing atmospheres, was carried out. While possessing low thermal expansion coefficient (TEC) values, the composites having low Ni content (15 mol.%–70 mol.%) did not satisfy the requirement of high electronic conductivity. Conversely, the 15Sr 2 Mg 0.25 Ni 0.75 MoO 6−δ + 85NiO samples demonstrated very high electrical conductivity (489 S sm −1 at 850 °C in wet H 2 ) due to well-developed Ni-based networks, and no deterioration of thermal properties (TEC values of 15.4 × 10 −6 K −1 in air and 14.5 × 10 −6 K −1 in 50%H 2 /Ar; linear expansion behaviour in both atmospheres). Therefore, this material has potential for use as a component of a fuel cell electrode system.

Suggested Citation

  • Lubov S. Skutina & Aleksey A. Vylkov & Dmitry K. Kuznetsov & Dmitry A. Medvedev & Vladimir Ya. Shur, 2019. "Tailoring Ni and Sr 2 Mg 0.25 Ni 0.75 MoO 6−δ Cermet Compositions for Designing the Fuel Electrodes of Solid Oxide Electrochemical Cells," Energies, MDPI, vol. 12(12), pages 1-11, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:12:p:2394-:d:241895
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/12/2394/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/12/2394/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ramadhani, F. & Hussain, M.A. & Mokhlis, H. & Hajimolana, S., 2017. "Optimization strategies for Solid Oxide Fuel Cell (SOFC) application: A literature survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 460-484.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zarabi Golkhatmi, Sanaz & Asghar, Muhammad Imran & Lund, Peter D., 2022. "A review on solid oxide fuel cell durability: Latest progress, mechanisms, and study tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zapata-Ramírez, Víctor & Rosendo-Santos, Paula & Amador, Ulises & Ritter, Clemens & Mather, Glenn C. & Pérez-Coll, Domingo, 2022. "Optimisation of high-performance, cobalt-free SrFe1-xMoxO3-δ cathodes for solid oxide fuel cells prepared by spray pyrolysis," Renewable Energy, Elsevier, vol. 185(C), pages 1167-1176.
    2. Li, Huan & Li, Kun & Zafetti, Nicholas & Gu, Jianfeng, 2020. "Improvement of energy supply configuration for telecommunication system in remote area s based on improved chaotic world cup optimization algorithm," Energy, Elsevier, vol. 192(C).
    3. Cheng, Tianliang & Jiang, Jianhua & Wu, Xiaodong & Li, Xi & Xu, Mengxue & Deng, Zhonghua & Li, Jian, 2019. "Application oriented multiple-objective optimization, analysis and comparison of solid oxide fuel cell systems with different configurations," Applied Energy, Elsevier, vol. 235(C), pages 914-929.
    4. Lv, Xiuqing & Chen, Huili & Zhou, Wei & Cheng, Fangqin & Li, Si-Dian & Shao, Zongping, 2020. "Direct-methane solid oxide fuel cells with an in situ formed Ni–Fe alloy composite catalyst layer over Ni–YSZ anodes," Renewable Energy, Elsevier, vol. 150(C), pages 334-341.
    5. El-Hay, E.A. & El-Hameed, M.A. & El-Fergany, A.A., 2019. "Optimized Parameters of SOFC for steady state and transient simulations using interior search algorithm," Energy, Elsevier, vol. 166(C), pages 451-461.
    6. Eichhorn Colombo, Konrad W. & Kharton, Vladislav V. & Berto, Filippo & Paltrinieri, Nicola, 2020. "Mathematical modeling and simulation of hydrogen-fueled solid oxide fuel cell system for micro-grid applications - Effect of failure and degradation on transient performance," Energy, Elsevier, vol. 202(C).
    7. Abdelkareem, Mohammad Ali & Tanveer, Waqas Hassan & Sayed, Enas Taha & Assad, M. El Haj & Allagui, Anis & Cha, S.W., 2019. "On the technical challenges affecting the performance of direct internal reforming biogas solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 361-375.
    8. Farnak, M. & Esfahani, J.A. & Bozorgmehri, S., 2020. "An experimental design of the solid oxide fuel cell performance by using partially oxidation reforming of natural gas," Renewable Energy, Elsevier, vol. 147(P1), pages 155-163.
    9. Mohamed Louzazni & Sameer Al-Dahidi & Marco Mussetta, 2020. "Fuel Cell Characteristic Curve Approximation Using the Bézier Curve Technique," Sustainability, MDPI, vol. 12(19), pages 1-23, October.
    10. Gainey, Brian & Lawler, Benjamin, 2021. "A fuel cell free piston gas turbine hybrid architecture for high-efficiency, load-flexible power generation," Applied Energy, Elsevier, vol. 283(C).
    11. Alena Vagaská & Miroslav Gombár & Ľuboslav Straka, 2022. "Selected Mathematical Optimization Methods for Solving Problems of Engineering Practice," Energies, MDPI, vol. 15(6), pages 1-22, March.
    12. Hesham Alhumade & Ahmed Fathy & Abdulrahim Al-Zahrani & Muhyaddin Jamal Rawa & Hegazy Rezk, 2021. "Optimal Parameter Estimation Methodology of Solid Oxide Fuel Cell Using Modern Optimization," Mathematics, MDPI, vol. 9(9), pages 1-19, May.
    13. Giarola, Sara & Forte, Ornella & Lanzini, Andrea & Gandiglio, Marta & Santarelli, Massimo & Hawkes, Adam, 2018. "Techno-economic assessment of biogas-fed solid oxide fuel cell combined heat and power system at industrial scale," Applied Energy, Elsevier, vol. 211(C), pages 689-704.
    14. Murat Peksen, 2021. "Hydrogen Technology towards the Solution of Environment-Friendly New Energy Vehicles," Energies, MDPI, vol. 14(16), pages 1-6, August.
    15. Wang, Shicheng & Liu, Xin & Gu, Xueying & Huang, Xinyu & Li, Yu, 2023. "Analysis and multi-objective optimization of integrating a syngas-fed solid oxide fuel cell improved by a two-stage expander-organic flash cycle using an ejector and a desalination cycle," Energy, Elsevier, vol. 272(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:12:p:2394-:d:241895. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.