IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i11p2047-d235104.html
   My bibliography  Save this article

Aggregation Strategy for Reactive Power Compensation Techniques—Validation

Author

Listed:
  • Jibran Ali

    (MEAN4SG & DITEN—University of Genoa, via all’Opera Pia 11a, 16145 Genova, Italy)

  • Stefano Massucco

    (DITEN—University of Genova, via all’Opera Pia 11a, 16145 Genova, Italy)

  • Federico Silvestro

    (DITEN—University of Genova, via all’Opera Pia 11a, 16145 Genova, Italy)

Abstract

Reactive power provision is a vital ancillary service, which provides opportunities to service market and power generators. The net reactive power in a balanced power grid needs to be zero, and the imbalance occurs due to the capacitive and inductive behavior of the extensive transmission lines, and because of the intermittent behavior of load-demand. This mismanagement in reactive power causes voltage instability, and hence the paper compares the most common reactive power compensation techniques, which are prevalent in both literature and commercial levels. The paper perceives the trade-off between the compared techniques, and realizes to use the aggregation of different techniques to present a coordinated control mechanism that complies with the Italian regulations. The parameters for the proposed aggregation include the amount of reactive power, real power losses during reactive power provision, and response time. The paper then implements IEEE 9 bus transmission-generation system in DIgSILENT to set up the platform for validation of the proposed strategy. Finally, it simulates Transmission System Operator (TSO) test cases on the implemented test system.

Suggested Citation

  • Jibran Ali & Stefano Massucco & Federico Silvestro, 2019. "Aggregation Strategy for Reactive Power Compensation Techniques—Validation," Energies, MDPI, vol. 12(11), pages 1-13, May.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2047-:d:235104
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/11/2047/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/11/2047/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Famous O. Igbinovia & Ghaeth Fandi & Ibrahim Ahmad & Zdenek Muller & Josef Tlusty, 2018. "Modeling and Simulation of the Anticipated Effects of the Synchronous Condenser on an Electric-Power Network with Participating Wind Plants," Sustainability, MDPI, vol. 10(12), pages 1-17, December.
    2. Weiming Liu & Tingting Zheng & Ziwen Liu & Zhihua Fan & Yilong Kang & Da Wang & Mingming Zhang & Shihong Miao, 2018. "Active and Reactive Power Compensation Control Strategy for VSC-HVDC Systems under Unbalanced Grid Conditions," Energies, MDPI, vol. 11(11), pages 1-19, November.
    3. Hua Li & Che Wen & Kuei-Hsiang Chao & Ling-Ling Li, 2017. "Research on Inverter Integrated Reactive Power Control Strategy in the Grid-Connected PV Systems," Energies, MDPI, vol. 10(7), pages 1-21, July.
    4. Yunhwan Lee & Hwachang Song, 2019. "A Reactive Power Compensation Strategy for Voltage Stability Challenges in the Korean Power System with Dynamic Loads," Sustainability, MDPI, vol. 11(2), pages 1-19, January.
    5. Martin Håberg & Hanna Bood & Gerard Doorman, 2019. "Preventing Internal Congestion in an Integrated European Balancing Activation Optimization," Energies, MDPI, vol. 12(3), pages 1-11, February.
    6. Ammar Arshad & Martin Lindner & Matti Lehtonen, 2017. "An Analysis of Photo-Voltaic Hosting Capacity in Finnish Low Voltage Distribution Networks," Energies, MDPI, vol. 10(11), pages 1-16, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdullahi Oboh Muhammed & Muhyaddin Rawa, 2020. "A Systematic PVQV-Curves Approach for Investigating the Impact of Solar Photovoltaic-Generator in Power System Using PowerWorld Simulator," Energies, MDPI, vol. 13(10), pages 1-21, May.
    2. Łukasz Ciepliński & Michał Gwóźdź & Rafał M. Wojciechowski, 2022. "Application of a Tuned Inductor in a DC Power Supply with an Active Compensation Function," Energies, MDPI, vol. 15(17), pages 1-15, August.
    3. Samar Fatima & Verner Püvi & Ammar Arshad & Mahdi Pourakbari-Kasmaei & Matti Lehtonen, 2021. "Comparison of Economical and Technical Photovoltaic Hosting Capacity Limits in Distribution Networks," Energies, MDPI, vol. 14(9), pages 1-23, April.
    4. Temitayo O. Olowu & Aditya Sundararajan & Masood Moghaddami & Arif I. Sarwat, 2018. "Future Challenges and Mitigation Methods for High Photovoltaic Penetration: A Survey," Energies, MDPI, vol. 11(7), pages 1-32, July.
    5. Markel Zubiaga & Alain Sanchez-Ruiz & Eneko Olea & Eneko Unamuno & Aitor Bilbao & Joseba Arza, 2020. "Power Capability Boundaries for an Inverter Providing Multiple Grid Support Services," Energies, MDPI, vol. 13(17), pages 1-14, August.
    6. Pedro Roncero-Sánchez & Alfonso Parreño Torres & Javier Vázquez & Francisco Javier López-Alcolea & Emilio J. Molina-Martínez & Felix Garcia-Torres, 2021. "Multiterminal HVDC System with Power Quality Enhancement," Energies, MDPI, vol. 14(5), pages 1-22, February.
    7. Yu-Jen Liu & Yu-Hsuan Tai & Yih-Der Lee & Jheng-Lung Jiang & Chen-Wei Lin, 2020. "Assessment of PV Hosting Capacity in a Small Distribution System by an Improved Stochastic Analysis Method," Energies, MDPI, vol. 13(22), pages 1-20, November.
    8. Saša Vlahinić & Dubravko Franković & Vitomir Komen & Anamarija Antonić, 2019. "Reactive Power Compensation with PV Inverters for System Loss Reduction," Energies, MDPI, vol. 12(21), pages 1-17, October.
    9. Chathurangi, D. & Jayatunga, U. & Perera, S., 2022. "Recent investigations on the evaluation of solar PV hosting capacity in LV distribution networks constrained by voltage rise," Renewable Energy, Elsevier, vol. 199(C), pages 11-20.
    10. Tiago Elias Castelo de Oliveira & Math Bollen & Paulo Fernando Ribeiro & Pedro M. S. de Carvalho & Antônio C. Zambroni & Benedito D. Bonatto, 2019. "The Concept of Dynamic Hosting Capacity for Distributed Energy Resources: Analytics and Practical Considerations," Energies, MDPI, vol. 12(13), pages 1-18, July.
    11. Luigi Costanzo & Massimo Vitelli, 2019. "A Novel MPPT Technique for Single Stage Grid-Connected PV Systems: T4S," Energies, MDPI, vol. 12(23), pages 1-13, November.
    12. Mir Sayed Shah Danish & Tomonobu Senjyu & Sayed Mir Shah Danish & Najib Rahman Sabory & Narayanan K & Paras Mandal, 2019. "A Recap of Voltage Stability Indices in the Past Three Decades," Energies, MDPI, vol. 12(8), pages 1-18, April.
    13. Mohammad Seydali Seyf Abad & Jin Ma & Ahmad Shabir Ahmadyar & Hesamoddin Marzooghi, 2018. "Distributionally Robust Distributed Generation Hosting Capacity Assessment in Distribution Systems," Energies, MDPI, vol. 11(11), pages 1-19, November.
    14. Samar Fatima & Verner Püvi & Matti Lehtonen, 2021. "Comparison of Different References When Assessing PV HC in Distribution Networks," Clean Technol., MDPI, vol. 3(1), pages 1-15, February.
    15. Ismael, Sherif M. & Abdel Aleem, Shady H.E. & Abdelaziz, Almoataz Y. & Zobaa, Ahmed F., 2019. "State-of-the-art of hosting capacity in modern power systems with distributed generation," Renewable Energy, Elsevier, vol. 130(C), pages 1002-1020.
    16. Yilin Xu & Jie He & Yang Liu & Zilu Li & Weicong Cai & Xiangang Peng, 2023. "Evaluation Method for Hosting Capacity of Rooftop Photovoltaic Considering Photovoltaic Potential in Distribution System," Energies, MDPI, vol. 16(22), pages 1-23, November.
    17. Ammar Arshad & Verner Püvi & Matti Lehtonen, 2018. "Monte Carlo-Based Comprehensive Assessment of PV Hosting Capacity and Energy Storage Impact in Realistic Finnish Low-Voltage Networks," Energies, MDPI, vol. 11(6), pages 1-14, June.
    18. Masood, Nahid-Al- & Mahmud, Sajjad Uddin & Ansary, Md Nazmuddoha & Deeba, Shohana Rahman, 2022. "Improvement of system strength under high wind penetration: A techno-economic assessment using synchronous condenser and SVC," Energy, Elsevier, vol. 246(C).
    19. Sherif M. Ismael & Shady H. E. Abdel Aleem & Almoataz Y. Abdelaziz & Ahmed F. Zobaa, 2019. "Probabilistic Hosting Capacity Enhancement in Non-Sinusoidal Power Distribution Systems Using a Hybrid PSOGSA Optimization Algorithm," Energies, MDPI, vol. 12(6), pages 1-23, March.
    20. Kharrazi, A. & Sreeram, V. & Mishra, Y., 2020. "Assessment techniques of the impact of grid-tied rooftop photovoltaic generation on the power quality of low voltage distribution network - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2047-:d:235104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.