IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i8p1544-d225479.html
   My bibliography  Save this article

A Recap of Voltage Stability Indices in the Past Three Decades

Author

Listed:
  • Mir Sayed Shah Danish

    (Strategic Research Projects Center, University of the Ryukyus, 1 Senbaru, Okinawa 903-0213, Japan)

  • Tomonobu Senjyu

    (Department of Electrical and Electronics Engineering, University of the Ryukyus, 1 Senbaru, Okinawa 903-0213, Japan)

  • Sayed Mir Shah Danish

    (Department of Electrical and Electronics Engineering, University of the Ryukyus, 1 Senbaru, Okinawa 903-0213, Japan)

  • Najib Rahman Sabory

    (Department of Energy Engineering, Kabul University, Jamal Mina, Karti Sakhi, Kabul 1006, Afghanistan)

  • Narayanan K

    (Department of Electrical and Electronics Engineering, SASTRA Deemed University, Thanjavur, Tamil Nadu 613401, India)

  • Paras Mandal

    (Department of Electrical and Computer Engineering, The University of Texas at El Paso, Texas, TX 79968, USA)

Abstract

Increasing demand for electricity and the modernization of power systems within competitive markets has induced power systems to operate close to their stability limits. Therefore, the continuous monitoring and control of power systems through voltage stability indices is urgently needed. This is the first-ever effort to examine more than 40 voltage stability indices based on their formulation, application, performance, and assessment measures. These indices are sorted based on a logical and chronological order considering the most recent indices to be applied worldwide. However, the generalizability of these indices in terms of multivariable objectives is limited. Despite its limitation, this study systematically reviews available indices in the literature within the past three decades to compile an integrated knowledge base with an up-to-date exposition. This is followed by a comparative analysis in terms of their similarity, functionality, applicability, formulation, merit, demerit, and overall performance. Also, a broad categorization of voltage stability indices is addressed. This study serves as an exhaustive roadmap of the issue and can be counted as a reference for planning and operation in the context of voltage stability for students, researchers, scholars, and practitioners.

Suggested Citation

  • Mir Sayed Shah Danish & Tomonobu Senjyu & Sayed Mir Shah Danish & Najib Rahman Sabory & Narayanan K & Paras Mandal, 2019. "A Recap of Voltage Stability Indices in the Past Three Decades," Energies, MDPI, vol. 12(8), pages 1-18, April.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1544-:d:225479
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/8/1544/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/8/1544/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Majid Ghaffarianfar & Amin Hajizadeh, 2018. "Voltage Stability of Low-Voltage Distribution Grid with High Penetration of Photovoltaic Power Units," Energies, MDPI, vol. 11(8), pages 1-13, July.
    2. Chang Han & Yuxuan Zhao & Zhenzhi Lin & Yi Ding & Li Yang & Guanqiang Lin & Tianwen Mo & Xiaojun Ye, 2018. "Critical Lines Identification for Skeleton-Network of Power Systems under Extreme Weather Conditions Based on the Modified VIKOR Method," Energies, MDPI, vol. 11(6), pages 1-18, May.
    3. Xie, Dunjian & Hui, Hongxun & Ding, Yi & Lin, Zhenzhi, 2018. "Operating reserve capacity evaluation of aggregated heterogeneous TCLs with price signals," Applied Energy, Elsevier, vol. 216(C), pages 338-347.
    4. Trinh Phi Hai & Hector Cho & Il-Yop Chung & Hyun-Koo Kang & Jintae Cho & Juyong Kim, 2017. "A Novel Voltage Control Scheme for Low-Voltage DC Distribution Systems Using Multi-Agent Systems," Energies, MDPI, vol. 10(1), pages 1-20, January.
    5. Sultana, U. & Khairuddin, Azhar B. & Aman, M.M. & Mokhtar, A.S. & Zareen, N., 2016. "A review of optimum DG placement based on minimization of power losses and voltage stability enhancement of distribution system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 363-378.
    6. Yunhwan Lee & Hwachang Song, 2019. "A Reactive Power Compensation Strategy for Voltage Stability Challenges in the Korean Power System with Dynamic Loads," Sustainability, MDPI, vol. 11(2), pages 1-19, January.
    7. Warid Warid & Hashim Hizam & Norman Mariun & Noor Izzri Abdul-Wahab, 2016. "Optimal Power Flow Using the Jaya Algorithm," Energies, MDPI, vol. 9(9), pages 1-18, August.
    8. Yunqi Xiao & Yi Wang & Yanping Sun, 2018. "Reactive Power Optimal Control of a Wind Farm for Minimizing Collector System Losses," Energies, MDPI, vol. 11(11), pages 1-15, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Minal S. Salunke & Ramesh S. Karnik & Angadi B. Raju & Vinayak N. Gaitonde, 2024. "Analysis of Transmission System Stability with Distribution Generation Supplying Induction Motor Loads," Mathematics, MDPI, vol. 12(1), pages 1-29, January.
    2. Chandu Valuva & Subramani Chinnamuthu & Tahir Khurshaid & Ki-Chai Kim, 2023. "A Comprehensive Review on the Modelling and Significance of Stability Indices in Power System Instability Problems," Energies, MDPI, vol. 16(18), pages 1-45, September.
    3. Oludamilare Bode Adewuyi & Komla A. Folly & David T. O. Oyedokun & Emmanuel Idowu Ogunwole, 2022. "Power System Voltage Stability Margin Estimation Using Adaptive Neuro-Fuzzy Inference System Enhanced with Particle Swarm Optimization," Sustainability, MDPI, vol. 14(22), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongbo Shao & Yubin Mao & Yongmin Liu & Wanxun Liu & Sipei Sun & Peng Jia & Fufeng Miao & Li Yang & Chang Han & Bo Zhang, 2018. "A Three-Stage Procedure for Controlled Islanding to Prevent Wide-Area Blackouts," Energies, MDPI, vol. 11(11), pages 1-15, November.
    2. Łukasz Ciepliński & Michał Gwóźdź & Rafał M. Wojciechowski, 2022. "Application of a Tuned Inductor in a DC Power Supply with an Active Compensation Function," Energies, MDPI, vol. 15(17), pages 1-15, August.
    3. Hamdy M. Sultan & Ahmed A. Zaki Diab & Oleg N. Kuznetsov & Ziad M. Ali & Omer Abdalla, 2019. "Evaluation of the Impact of High Penetration Levels of PV Power Plants on the Capacity, Frequency and Voltage Stability of Egypt’s Unified Grid," Energies, MDPI, vol. 12(3), pages 1-22, February.
    4. Omaji Samuel & Nadeem Javaid & Mahmood Ashraf & Farruh Ishmanov & Muhammad Khalil Afzal & Zahoor Ali Khan, 2018. "Jaya based Optimization Method with High Dispatchable Distributed Generation for Residential Microgrid," Energies, MDPI, vol. 11(6), pages 1-29, June.
    5. Ahmed Al Ameri & Aouchenni Ounissa & Cristian Nichita & Aouzellag Djamal, 2017. "Power Loss Analysis for Wind Power Grid Integration Based on Weibull Distribution," Energies, MDPI, vol. 10(4), pages 1-16, April.
    6. Skolfield, J. Kyle & Escobedo, Adolfo R., 2022. "Operations research in optimal power flow: A guide to recent and emerging methodologies and applications," European Journal of Operational Research, Elsevier, vol. 300(2), pages 387-404.
    7. Anurag Gautam & Ibraheem & Gulshan Sharma & Mohammad F. Ahmer & Narayanan Krishnan, 2023. "Methods and Methodologies for Congestion Alleviation in the DPS: A Comprehensive Review," Energies, MDPI, vol. 16(4), pages 1-28, February.
    8. Jun Dong & Dongxue Wang & Dongran Liu & Palidan Ainiwaer & Linpeng Nie, 2019. "Operation Health Assessment of Power Market Based on Improved Matter-Element Extension Cloud Model," Sustainability, MDPI, vol. 11(19), pages 1-25, October.
    9. Sultana, U. & Khairuddin, Azhar B. & Sultana, Beenish & Rasheed, Nadia & Qazi, Sajid Hussain & Malik, Nimra Riaz, 2018. "Placement and sizing of multiple distributed generation and battery swapping stations using grasshopper optimizer algorithm," Energy, Elsevier, vol. 165(PA), pages 408-421.
    10. Younes Zahraoui & Ibrahim Alhamrouni & Saad Mekhilef & M. Reyasudin Basir Khan & Mehdi Seyedmahmoudian & Alex Stojcevski & Ben Horan, 2021. "Energy Management System in Microgrids: A Comprehensive Review," Sustainability, MDPI, vol. 13(19), pages 1-33, September.
    11. Murtadha Al-Kaabi & Virgil Dumbrava & Mircea Eremia, 2022. "A Slime Mould Algorithm Programming for Solving Single and Multi-Objective Optimal Power Flow Problems with Pareto Front Approach: A Case Study of the Iraqi Super Grid High Voltage," Energies, MDPI, vol. 15(20), pages 1-33, October.
    12. Markel Zubiaga & Alain Sanchez-Ruiz & Eneko Olea & Eneko Unamuno & Aitor Bilbao & Joseba Arza, 2020. "Power Capability Boundaries for an Inverter Providing Multiple Grid Support Services," Energies, MDPI, vol. 13(17), pages 1-14, August.
    13. Elattar, Ehab E. & ElSayed, Salah K., 2019. "Modified JAYA algorithm for optimal power flow incorporating renewable energy sources considering the cost, emission, power loss and voltage profile improvement," Energy, Elsevier, vol. 178(C), pages 598-609.
    14. Mohammed Hamouda Ali & Ali M. El-Rifaie & Ahmed A. F. Youssef & Vladimir N. Tulsky & Mohamed A. Tolba, 2023. "Techno-Economic Strategy for the Load Dispatch and Power Flow in Power Grids Using Peafowl Optimization Algorithm," Energies, MDPI, vol. 16(2), pages 1-29, January.
    15. Salah K. ElSayed & Ehab E. Elattar, 2021. "Slime Mold Algorithm for Optimal Reactive Power Dispatch Combining with Renewable Energy Sources," Sustainability, MDPI, vol. 13(11), pages 1-25, May.
    16. Hui, Hongxun & Ding, Yi & Song, Yonghua & Rahman, Saifur, 2019. "Modeling and control of flexible loads for frequency regulation services considering compensation of communication latency and detection error," Applied Energy, Elsevier, vol. 250(C), pages 161-174.
    17. Saša Vlahinić & Dubravko Franković & Vitomir Komen & Anamarija Antonić, 2019. "Reactive Power Compensation with PV Inverters for System Loss Reduction," Energies, MDPI, vol. 12(21), pages 1-17, October.
    18. Salman Khodayifar & Mohammad A. Raayatpanah & Abbas Rabiee & Hamed Rahimian & Panos M. Pardalos, 2018. "Optimal Long-Term Distributed Generation Planning and Reconfiguration of Distribution Systems: An Accelerating Benders’ Decomposition Approach," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 283-310, October.
    19. Murtadha Al-Kaabi & Virgil Dumbrava & Mircea Eremia, 2022. "Single and Multi-Objective Optimal Power Flow Based on Hunger Games Search with Pareto Concept Optimization," Energies, MDPI, vol. 15(22), pages 1-31, November.
    20. Gracita Batista Rosas & Elizete Maria Lourenço & Djalma Mosqueira Falcão & Thelma Solange Piazza Fernandes, 2019. "An Expeditious Methodology to Assess the Effects of Intermittent Generation on Power Systems," Energies, MDPI, vol. 12(6), pages 1-18, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1544-:d:225479. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.