IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i8p2129-d163960.html
   My bibliography  Save this article

An Overview of Existing Experiences with Solar-Powered E-Bikes

Author

Listed:
  • Georgia Apostolou

    (Faculty of Engineering Technology, Department of Design, Production and Management, University of Twente, Enschede 7500 AE, The Netherlands)

  • Angèle Reinders

    (Faculty of Engineering Technology, Department of Design, Production and Management, University of Twente, Enschede 7500 AE, The Netherlands)

  • Karst Geurs

    (Faculty of Engineering Technology, Department of Design, Production and Management, University of Twente, Enschede 7500 AE, The Netherlands)

Abstract

Electric bicycles (e-bikes) are considered a sustainable alternative to automobile transportation today. The electric bike includes all the benefits that conventional bicycles offer, plus faster, more comfortable and longer trips, as well as less effort for the user. In this paper, we specifically focus on a new type of e-bike, the so-called ‘solar-powered e-bike’. Therefore, this review paper explores existing literature findings for the use of solar energy in transportation, and more specifically in e-bikes. This paper aims to capture the status of and experiences with the use of e-bikes; more specifically, with solar-powered e-bikes. It presents research conducted so far on e-bikes and solar-powered e-bikes, as well as the main technical features of the solar e-bike. Finally, it analyzes a sample of e-bikes’ and solar-powered e-bikes’ users, based on Dutch National Travel Survey data and an experimental field study conducted in 2017. Data showed that the main target group of (solar) e-bikes are commuters in the age group between 40 and 60 years old, commuting distances longer than 6 km, with a gross income higher than €2500. Solar-powered e-bikes are concluded to have potential as a sustainable way of transportation in urban areas and cities, potentially replacing the conventional means of transport.

Suggested Citation

  • Georgia Apostolou & Angèle Reinders & Karst Geurs, 2018. "An Overview of Existing Experiences with Solar-Powered E-Bikes," Energies, MDPI, vol. 11(8), pages 1-20, August.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:2129-:d:163960
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/8/2129/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/8/2129/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Seebauer, Sebastian, 2015. "Why early adopters engage in interpersonal diffusion of technological innovations: An empirical study on electric bicycles and electric scooters," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 146-160.
    2. Jones, Tim & Harms, Lucas & Heinen, Eva, 2016. "Motives, perceptions and experiences of electric bicycle owners and implications for health, wellbeing and mobility," Journal of Transport Geography, Elsevier, vol. 53(C), pages 41-49.
    3. Lucas Harms & Luca Bertolini & Marco Te Brömmelstroet, 2016. "Performance of Municipal Cycling Policies in Medium-Sized Cities in the Netherlands since 2000," Transport Reviews, Taylor & Francis Journals, vol. 36(1), pages 134-162, January.
    4. Eva Heinen & Kees Maat & Bert Wee, 2013. "The effect of work-related factors on the bicycle commute mode choice in the Netherlands," Transportation, Springer, vol. 40(1), pages 23-43, January.
    5. Ayako Taniguchi & Satoshi Fujii, 2007. "Promoting Public Transport Using Marketing Techniques in Mobility Management and Verifying their Quantitative Effects," Transportation, Springer, vol. 34(1), pages 37-49, January.
    6. Shaheen, Susan & Guzman, Stacey & Zhang, Hua, 2010. "Bikesharing in Europe, the Americas, and Asia: Past, Present, and Future," Institute of Transportation Studies, Working Paper Series qt79v822k5, Institute of Transportation Studies, UC Davis.
    7. Wardman, Mark & Tight, Miles & Page, Matthew, 2007. "Factors influencing the propensity to cycle to work," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(4), pages 339-350, May.
    8. Cherry, Christopher R. & Weinert, Jonathan X. & Yang, Xinmiao, 2009. "Comparative Environmental Impacts of Electric Bikes in China," Institute of Transportation Studies, Working Paper Series qt16k918sh, Institute of Transportation Studies, UC Davis.
    9. Shaheen, Susan A & Guzman, Stacey & Zhang, Hua, 2010. "Bikesharing in Europe, the Americas, and Asia: Past, Present and Future," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6qg8q6ft, Institute of Transportation Studies, UC Berkeley.
    10. Wolf, Angelika & Seebauer, Sebastian, 2014. "Technology adoption of electric bicycles: A survey among early adopters," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 196-211.
    11. Millo, Federico & Rolando, Luciano & Fuso, Rocco & Mallamo, Fabio, 2014. "Real CO2 emissions benefits and end user’s operating costs of a plug-in Hybrid Electric Vehicle," Applied Energy, Elsevier, vol. 114(C), pages 563-571.
    12. Geoffrey Rose, 2012. "E-bikes and urban transportation: emerging issues and unresolved questions," Transportation, Springer, vol. 39(1), pages 81-96, January.
    13. Kieran Donaghy, 2011. "Models of travel demand with endogenous preference change and heterogeneous agents," Journal of Geographical Systems, Springer, vol. 13(1), pages 17-30, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gautham Ram Chandra Mouli & Peter Van Duijsen & Francesca Grazian & Ajay Jamodkar & Pavol Bauer & Olindo Isabella, 2020. "Sustainable E-Bike Charging Station That Enables AC, DC and Wireless Charging from Solar Energy," Energies, MDPI, vol. 13(14), pages 1-21, July.
    2. Wojciech Sałabun & Krzysztof Palczewski & Jarosław Wątróbski, 2019. "Multicriteria Approach to Sustainable Transport Evaluation under Incomplete Knowledge: Electric Bikes Case Study," Sustainability, MDPI, vol. 11(12), pages 1-19, June.
    3. Ferguson, Beth, 2022. "Designing with the Sun: Solar Curriculum Project," Institute of Transportation Studies, Working Paper Series qt4f74n7h0, Institute of Transportation Studies, UC Davis.
    4. Ferguson, Beth, 2022. "Exploring Solar Charging Station Design for Electric Bicycles," Institute of Transportation Studies, Working Paper Series qt16r0g54f, Institute of Transportation Studies, UC Davis.
    5. Monika Hamerska & Monika Ziółko & Patryk Stawiarski, 2022. "A Sustainable Transport System—The MMQUAL Model of Shared Micromobility Service Quality Assessment," Sustainability, MDPI, vol. 14(7), pages 1-18, March.
    6. Joao L. Afonso & Luiz A. Lisboa Cardoso & Delfim Pedrosa & Tiago J. C. Sousa & Luis Machado & Mohamed Tanta & Vitor Monteiro, 2020. "A Review on Power Electronics Technologies for Electric Mobility," Energies, MDPI, vol. 13(23), pages 1-61, December.
    7. Paweł Ziemba & Izabela Gago, 2022. "Compromise Multi-Criteria Selection of E-Scooters for the Vehicle Sharing System in Poland," Energies, MDPI, vol. 15(14), pages 1-26, July.
    8. Walter Leal Filho & Ismaila Rimi Abubakar & Richard Kotter & Thomas Skou Grindsted & Abdul-Lateef Balogun & Amanda Lange Salvia & Yusuf A. Aina & Franziska Wolf, 2021. "Framing Electric Mobility for Urban Sustainability in a Circular Economy Context: An Overview of the Literature," Sustainability, MDPI, vol. 13(14), pages 1-23, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Synek, Stefan & Koenigstorfer, Joerg, 2018. "Exploring adoption determinants of tax-subsidized company-leasing bicycles from the perspective of German employers and employees," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 238-260.
    2. Jin, Sheng & Qu, Xiaobo & Zhou, Dan & Xu, Cheng & Ma, Dongfang & Wang, Dianhai, 2015. "Estimating cycleway capacity and bicycle equivalent unit for electric bicycles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 225-248.
    3. Nematchoua, ModesteKameni & Deuse, Caroline & Cools, Mario & Reiter, Sigrid, 2020. "Evaluation of the potential of classic and electric bicycle commuting as an impetus for the transition towards environmentally sustainable cities: A case study of the university campuses in Liege, Bel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    4. Tomasz Bieliński & Łukasz Dopierała & Maciej Tarkowski & Agnieszka Ważna, 2020. "Lessons from Implementing a Metropolitan Electric Bike Sharing System," Energies, MDPI, vol. 13(23), pages 1-21, November.
    5. Thomas, Alainna, 2016. "A More Sustainable Minivan? An Exploratory Study of Electric Bicycle Use by San Francisco Bay Area Families," Institute of Transportation Studies, Working Paper Series qt6g79m3xx, Institute of Transportation Studies, UC Davis.
    6. Wolf, Angelika & Seebauer, Sebastian, 2014. "Technology adoption of electric bicycles: A survey among early adopters," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 196-211.
    7. Ziwen Ling & Christopher R. Cherry & John H. MacArthur & Jonathan X. Weinert, 2017. "Differences of Cycling Experiences and Perceptions between E-Bike and Bicycle Users in the United States," Sustainability, MDPI, vol. 9(9), pages 1-18, September.
    8. Pucher, John & Buehler, Ralph & Seinen, Mark, 2011. "Bicycling renaissance in North America? An update and re-appraisal of cycling trends and policies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(6), pages 451-475, July.
    9. Acheampong, Ransford A. & Siiba, Alhassan, 2018. "Examining the determinants of utility bicycling using a socio-ecological framework: An exploratory study of the Tamale Metropolis in Northern Ghana," Journal of Transport Geography, Elsevier, vol. 69(C), pages 1-10.
    10. Wang, Mingshu & Zhou, Xiaolu, 2017. "Bike-sharing systems and congestion: Evidence from US cities," Journal of Transport Geography, Elsevier, vol. 65(C), pages 147-154.
    11. Kwiatkowski Michał Adam, 2018. "Urban Cycling as an Indicator of Socio-Economic Innovation and Sustainable Transport," Quaestiones Geographicae, Sciendo, vol. 37(4), pages 23-32, December.
    12. Geoffrey Rose, 2012. "E-bikes and urban transportation: emerging issues and unresolved questions," Transportation, Springer, vol. 39(1), pages 81-96, January.
    13. Jones, Tim & Harms, Lucas & Heinen, Eva, 2016. "Motives, perceptions and experiences of electric bicycle owners and implications for health, wellbeing and mobility," Journal of Transport Geography, Elsevier, vol. 53(C), pages 41-49.
    14. Zhao, Pengjun & Li, Shengxiao, 2017. "Bicycle-metro integration in a growing city: The determinants of cycling as a transfer mode in metro station areas in Beijing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 99(C), pages 46-60.
    15. Michał Adam Kwiatkowski & Elżbieta Grzelak-Kostulska & Jadwiga Biegańska, 2021. "Could It Be a Bike for Everyone? The Electric Bicycle in Poland," Energies, MDPI, vol. 14(16), pages 1-19, August.
    16. Esther Salmeron-Manzano & Francisco Manzano-Agugliaro, 2018. "The Electric Bicycle: Worldwide Research Trends," Energies, MDPI, vol. 11(7), pages 1-16, July.
    17. Paul Plazier & Gerd Weitkamp & Agnes van den Berg, 2023. "E-bikes in rural areas: current and potential users in the Netherlands," Transportation, Springer, vol. 50(4), pages 1449-1470, August.
    18. Umer Mansoor & Mohammad Tamim Kashifi & Fazal Rehman Safi & Syed Masiur Rahman, 2022. "A review of factors and benefits of non-motorized transport: a way forward for developing countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 1560-1582, February.
    19. Jadwiga Biegańska & Elżbieta Grzelak-Kostulska & Michał Adam Kwiatkowski, 2021. "A Typology of Attitudes towards the E-Bike against the Background of the Traditional Bicycle and the Car," Energies, MDPI, vol. 14(24), pages 1-21, December.
    20. Hallberg, Martin & Rasmussen, Thomas Kjær & Rich, Jeppe, 2021. "Modelling the impact of cycle superhighways and electric bicycles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 149(C), pages 397-418.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:2129-:d:163960. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.