IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i6p1574-d152693.html
   My bibliography  Save this article

Advanced Thermodynamic Analysis Applied to an Integrated Solar Combined Cycle System

Author

Listed:
  • Shucheng Wang

    (Key Laboratory of Condition Monitoring and Control for Power Plant Equipment, Ministry of Education, North China Electric Power University, Beijing 102206, China
    School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China)

  • Zhongguang Fu

    (Key Laboratory of Condition Monitoring and Control for Power Plant Equipment, Ministry of Education, North China Electric Power University, Beijing 102206, China
    School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China)

  • Gaoqiang Zhang

    (School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China)

  • Tianqing Zhang

    (School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China)

Abstract

The variation performance of integrated solar combined cycle (ISCC) is presented using energy, conventional exergy and advanced exergy analysis methods to provide information about exergy destruction of components and efficiencies of overall plant. Moreover, the theory of dividing the exergy destruction of main components into unavoidable/avoidable and exogenous/endogenous parts allows for further understanding the real potentials for improving. Besides, the exergy destruction rate and exergy efficiency of components as well as overall plant were hourly analyzed within a typical day. Results indicate the exergy destruction rate of overall system drops from 49.79% to 44.65% in summer and decreases from 49.79% to 47.59% in winter. As the solar irradiation intensity rises, the solar field efficiency reaches to 42.16% in winter and 47.5% in summer. The solar-to-electric energy efficiency gets to 13.69% in winter and 15.46% in summer. In addition, with the increase of solar energy input to the ISCC system, the exergy destruction of Brayton cycle components decreases; however, the exergy destruction of Rankine cycle components increases. Furthermore, the exergy destruction of solar field has a large extended from 14.55 MW to 58.03 MW. Moreover, the heat recovery steam generator (HRSG) and the steam turbines have the largest exergy destruction rate of 11.26% and 13.63% at 15:00 p.m.

Suggested Citation

  • Shucheng Wang & Zhongguang Fu & Gaoqiang Zhang & Tianqing Zhang, 2018. "Advanced Thermodynamic Analysis Applied to an Integrated Solar Combined Cycle System," Energies, MDPI, vol. 11(6), pages 1-16, June.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1574-:d:152693
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/6/1574/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/6/1574/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saghafifar, Mohammad & Gadalla, Mohamed, 2015. "Innovative inlet air cooling technology for gas turbine power plants using integrated solid desiccant and Maisotsenko cooler," Energy, Elsevier, vol. 87(C), pages 663-677.
    2. Zhu, Guangdong & Neises, Ty & Turchi, Craig & Bedilion, Robin, 2015. "Thermodynamic evaluation of solar integration into a natural gas combined cycle power plant," Renewable Energy, Elsevier, vol. 74(C), pages 815-824.
    3. Zhai, Rongrong & Peng, Pan & Yang, Yongping & Zhao, Miaomiao, 2014. "Optimization study of integration strategies in solar aided coal-fired power generation system," Renewable Energy, Elsevier, vol. 68(C), pages 80-86.
    4. Akbarzadeh, Sanaz & Valipour, Mohammad Sadegh, 2018. "Heat transfer enhancement in parabolic trough collectors: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 198-218.
    5. Ligang Wang & Yongping Yang & Tatiana Morosuk & George Tsatsaronis, 2012. "Advanced Thermodynamic Analysis and Evaluation of a Supercritical Power Plant," Energies, MDPI, vol. 5(6), pages 1-14, June.
    6. Montes, M.J. & Rovira, A. & Muñoz, M. & Martínez-Val, J.M., 2011. "Performance analysis of an Integrated Solar Combined Cycle using Direct Steam Generation in parabolic trough collectors," Applied Energy, Elsevier, vol. 88(9), pages 3228-3238.
    7. Najjar, Yousef S.H. & Abubaker, Ahmad M., 2017. "Thermoeconomic analysis and optimization of a novel inlet air cooling system with gas turbine engines using cascaded waste-heat recovery," Energy, Elsevier, vol. 128(C), pages 421-434.
    8. Baghernejad, A. & Yaghoubi, M., 2010. "Exergy analysis of an integrated solar combined cycle system," Renewable Energy, Elsevier, vol. 35(10), pages 2157-2164.
    9. Mokheimer, Esmail M.A. & Dabwan, Yousef N. & Habib, Mohamed A. & Said, Syed A.M. & Al-Sulaiman, Fahad A., 2015. "Development and assessment of integrating parabolic trough collectors with steam generation side of gas turbine cogeneration systems in Saudi Arabia," Applied Energy, Elsevier, vol. 141(C), pages 131-142.
    10. Petrakopoulou, Fontina & Tsatsaronis, George & Morosuk, Tatiana & Carassai, Anna, 2012. "Conventional and advanced exergetic analyses applied to a combined cycle power plant," Energy, Elsevier, vol. 41(1), pages 146-152.
    11. Alqahtani, Bandar Jubran & Patiño-Echeverri, Dalia, 2016. "Integrated Solar Combined Cycle Power Plants: Paving the way for thermal solar," Applied Energy, Elsevier, vol. 169(C), pages 927-936.
    12. Li, Yuanyuan & Yang, Yongping, 2014. "Thermodynamic analysis of a novel integrated solar combined cycle," Applied Energy, Elsevier, vol. 122(C), pages 133-142.
    13. Boyaghchi, Fateme Ahmadi & Molaie, Hanieh, 2015. "Advanced exergy and environmental analyses and multi objective optimization of a real combined cycle power plant with supplementary firing using evolutionary algorithm," Energy, Elsevier, vol. 93(P2), pages 2267-2279.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paride Gullo & Armin Hafner & Krzysztof Banasiak, 2019. "Thermodynamic Performance Investigation of Commercial R744 Booster Refrigeration Plants Based on Advanced Exergy Analysis," Energies, MDPI, vol. 12(3), pages 1-24, January.
    2. Brodrick, Philip G. & Brandt, Adam R. & Durlofsky, Louis J., 2018. "Optimal design and operation of integrated solar combined cycles under emissions intensity constraints," Applied Energy, Elsevier, vol. 226(C), pages 979-990.
    3. Paride Gullo, 2018. "Advanced Thermodynamic Analysis of a Transcritical R744 Booster Refrigerating Unit with Dedicated Mechanical Subcooling," Energies, MDPI, vol. 11(11), pages 1-26, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonio Rovira & Consuelo Sánchez & Manuel Valdés & Ruben Abbas & Rubén Barbero & María José Montes & Marta Muñoz & Javier Muñoz-Antón & Guillermo Ortega & Fernando Varela, 2018. "Comparison of Different Technologies for Integrated Solar Combined Cycles: Analysis of Concentrating Technology and Solar Integration," Energies, MDPI, vol. 11(5), pages 1-16, April.
    2. Okoroigwe, Edmund & Madhlopa, Amos, 2016. "An integrated combined cycle system driven by a solar tower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 337-350.
    3. Dabwan, Yousef N. & Pei, Gang & Gao, Guangtao & Li, Jing & Feng, Junsheng, 2019. "Performance analysis of integrated linear fresnel reflector with a conventional cooling, heat, and power tri-generation plant," Renewable Energy, Elsevier, vol. 138(C), pages 639-650.
    4. Dabwan, Yousef N. & Gang, Pei & Li, Jing & Gao, Guangtao & Feng, Junsheng, 2018. "Development and assessment of integrating parabolic trough collectors with gas turbine trigeneration system for producing electricity, chilled water, and freshwater," Energy, Elsevier, vol. 162(C), pages 364-379.
    5. Li, Yuanyuan & Xiong, Yamin, 2018. "Thermo-economic analysis of a novel cascade integrated solar combined cycle system," Energy, Elsevier, vol. 145(C), pages 116-127.
    6. Dabwan, Yousef N. & Pei, Gang, 2020. "A novel integrated solar gas turbine trigeneration system for production of power, heat and cooling: Thermodynamic-economic-environmental analysis," Renewable Energy, Elsevier, vol. 152(C), pages 925-941.
    7. Rovira, Antonio & Abbas, Rubén & Sánchez, Consuelo & Muñoz, Marta, 2020. "Proposal and analysis of an integrated solar combined cycle with partial recuperation," Energy, Elsevier, vol. 198(C).
    8. Colmenar-Santos, Antonio & Gómez-Camazón, David & Rosales-Asensio, Enrique & Blanes-Peiró, Jorge-Juan, 2018. "Technological improvements in energetic efficiency and sustainability in existing combined-cycle gas turbine (CCGT) power plants," Applied Energy, Elsevier, vol. 223(C), pages 30-51.
    9. Manente, Giovanni & Rech, Sergio & Lazzaretto, Andrea, 2016. "Optimum choice and placement of concentrating solar power technologies in integrated solar combined cycle systems," Renewable Energy, Elsevier, vol. 96(PA), pages 172-189.
    10. Liqiang Duan & Zhen Wang, 2018. "Performance Study of a Novel Integrated Solar Combined Cycle System," Energies, MDPI, vol. 11(12), pages 1-22, December.
    11. Li, Yuanyuan & Yang, Yongping, 2015. "Impacts of solar multiples on the performance of integrated solar combined cycle systems with two direct steam generation fields," Applied Energy, Elsevier, vol. 160(C), pages 673-680.
    12. Behar, Omar & Khellaf, Abdallah & Mohammedi, Kamal & Ait-Kaci, Sabrina, 2014. "A review of integrated solar combined cycle system (ISCCS) with a parabolic trough technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 223-250.
    13. Powell, Kody M. & Rashid, Khalid & Ellingwood, Kevin & Tuttle, Jake & Iverson, Brian D., 2017. "Hybrid concentrated solar thermal power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 215-237.
    14. Rovira, Antonio & Barbero, Rubén & Montes, María José & Abbas, Rubén & Varela, Fernando, 2016. "Analysis and comparison of Integrated Solar Combined Cycles using parabolic troughs and linear Fresnel reflectors as concentrating systems," Applied Energy, Elsevier, vol. 162(C), pages 990-1000.
    15. Zhang, Zuxian & Duan, Liqiang & Wang, Zhen & Ren, Yujie, 2022. "General performance evaluation method of integrated solar combined cycle (ISCC) system," Energy, Elsevier, vol. 240(C).
    16. Dabwan, Yousef N. & Pei, Gang & Kwan, Trevor Hocksun & Zhao, Bin, 2021. "An innovative hybrid solar preheating intercooled gas turbine using parabolic trough collectors," Renewable Energy, Elsevier, vol. 179(C), pages 1009-1026.
    17. Bame, Aaron T. & Furner, Joseph & Hoag, Ian & Mohammadi, Kasra & Powell, Kody & Iverson, Brian D., 2022. "Optimization of solar-coal hybridization for low solar augmentation," Applied Energy, Elsevier, vol. 319(C).
    18. Alqahtani, Bandar Jubran & Patiño-Echeverri, Dalia, 2016. "Integrated Solar Combined Cycle Power Plants: Paving the way for thermal solar," Applied Energy, Elsevier, vol. 169(C), pages 927-936.
    19. Ligang Wang & Zhiping Yang & Shivom Sharma & Alberto Mian & Tzu-En Lin & George Tsatsaronis & François Maréchal & Yongping Yang, 2018. "A Review of Evaluation, Optimization and Synthesis of Energy Systems: Methodology and Application to Thermal Power Plants," Energies, MDPI, vol. 12(1), pages 1-53, December.
    20. Afzali, Sayyed Faridoddin & Mahalec, Vladimir, 2017. "Optimal design, operation and analytical criteria for determining optimal operating modes of a CCHP with fired HRSG, boiler, electric chiller and absorption chiller," Energy, Elsevier, vol. 139(C), pages 1052-1065.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1574-:d:152693. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.