IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i6p1528-d152105.html
   My bibliography  Save this article

Potential of Russian Regions to Implement CO 2 -Enhanced Oil Recovery

Author

Listed:
  • Alexey Cherepovitsyn

    (Organization and Management Department, Saint-Petersburg Mining University, 21 Line, 2, St. Petersburg 199106, Russia)

  • Sergey Fedoseev

    (Kola Science Centre of the RAS, Fersman st., 24a, Apatite 184209, Russia)

  • Pavel Tcvetkov

    (Department of Informatics and Computer Technologies, Saint-Petersburg Mining University, 21 Line, 2, St. Petersburg 199106, Russia)

  • Ksenia Sidorova

    (Organization and Management Department, Saint-Petersburg Mining University, 21 Line, 2, St. Petersburg 199106, Russia)

  • Andrzej Kraslawski

    (School of Business and Management, Lappeenranta University of Technology, P.O. Box 20, FI-53851 Lappeenranta, Finland
    Faculty of Process and Environmental Engineering, Lodz University of Technology, ul. Wolczanska 213, 90-924 Lodz, Poland)

Abstract

The paper assesses the techno-economic potential of Russia to implement carbon capture and storage technologies that imply the capture of anthropogenic CO 2 and its injection into geologic reservoirs for long-term storage. The focus is on CO 2 enhanced oil recovery projects that seem to be the most economically promising option of carbon capture and storage. The novelty of the work lies in the formulation of a potential assessment method of CO 2 enhanced oil recovery, which allows for establishing a connection between energy production and oil extraction from the viewpoint of CO 2 supply and demand. Using linear optimization, the most promising combinations of CO 2 sources and sinks are identified and an economic evaluation of these projects is carried out. Based on this information, regions of Russia are ranked according to their prospects in regards to CO 2 capture and enhanced oil recovery storage. The results indicate that Russia has a significant potential to utilize its power plants as CO 2 sources for enhanced oil recovery projects. It has been estimated that 71 coal-fired power plants, and 185 of the gas-fired power plants of Russia annually produce 297.1 and 309.6 Mt of CO 2 that can cover 553.4 Mt of the demand of 322 Russian oil fields. At the same time, the total CO 2 storage capacity of the Russian fields is estimated at 7382.6 Mt, however, due to geological and technical factors, only 22.6% can be used for CO 2 -EOR projects. Of the 183 potential projects identified in the regional analysis phase, 99 were found to be cost-effective, with an average unit cost of € 19.07 per ton of CO 2 and a payback period of 8.71 years. The most promising of the estimated regions is characterized by a well-developed energy industry, relatively low transportation costs, numerous large and medium-sized oil fields at the final stages of development, and favorable geological conditions that minimize the cost of injection. Geographically, they are located in the North-Western, Volga, and Ural Federal districts.

Suggested Citation

  • Alexey Cherepovitsyn & Sergey Fedoseev & Pavel Tcvetkov & Ksenia Sidorova & Andrzej Kraslawski, 2018. "Potential of Russian Regions to Implement CO 2 -Enhanced Oil Recovery," Energies, MDPI, vol. 11(6), pages 1-22, June.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1528-:d:152105
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/6/1528/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/6/1528/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhou, Wenji & Jiang, Di & Chen, Dingjiang & Griffy-Brown, Charla & Jin, Yong & Zhu, Bing, 2016. "Capturing CO2 from cement plants: A priority for reducing CO2 emissions in China," Energy, Elsevier, vol. 106(C), pages 464-474.
    2. Koelbl, Barbara S. & van den Broek, Machteld A. & Wilting, Harry C. & Sanders, Mark W.J.L. & Bulavskaya, Tatyana & Wood, Richard & Faaij, André P.C. & van Vuuren, Detlef P., 2016. "Socio-economic impacts of low-carbon power generation portfolios: Strategies with and without CCS for the Netherlands," Applied Energy, Elsevier, vol. 183(C), pages 257-277.
    3. Viebahn, Peter & Vallentin, Daniel & Höller, Samuel, 2015. "Prospects of carbon capture and storage (CCS) in China’s power sector – An integrated assessment," Applied Energy, Elsevier, vol. 157(C), pages 229-244.
    4. Pérez-Fortes, Mar & Schöneberger, Jan C. & Boulamanti, Aikaterini & Tzimas, Evangelos, 2016. "Methanol synthesis using captured CO2 as raw material: Techno-economic and environmental assessment," Applied Energy, Elsevier, vol. 161(C), pages 718-732.
    5. Chen, Zheng-Ao & Li, Qi & Liu, Lan-Cui & Zhang, Xian & Kuang, Liping & Jia, Li & Liu, Guizhen, 2015. "A large national survey of public perceptions of CCS technology in China," Applied Energy, Elsevier, vol. 158(C), pages 366-377.
    6. Nataly Echevarria Huaman, Ruth & Xiu Jun, Tian, 2014. "Energy related CO2 emissions and the progress on CCS projects: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 368-385.
    7. Yoo, Byeong-Yong, 2017. "The development and comparison of CO2 BOG re-liquefaction processes for LNG fueled CO2 carriers," Energy, Elsevier, vol. 127(C), pages 186-197.
    8. Shin, Jungwoo & Lee, Chul-Yong & Kim, Hongbum, 2016. "Technology and demand forecasting for carbon capture and storage technology in South Korea," Energy Policy, Elsevier, vol. 98(C), pages 1-11.
    9. Akbilgic, Oguz & Doluweera, Ganesh & Mahmoudkhani, Maryam & Bergerson, Joule, 2015. "A meta-analysis of carbon capture and storage technology assessments: Understanding the driving factors of variability in cost estimates," Applied Energy, Elsevier, vol. 159(C), pages 11-18.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Irina Filatova & Liubov Nikolaichuk & Dokka Zakaev & Igor Ilin, 2021. "Public-Private Partnership as a Tool of Sustainable Development in the Oil-Refining Sector: Russian Case," Sustainability, MDPI, vol. 13(9), pages 1-23, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Viebahn & Emile J. L. Chappin, 2018. "Scrutinising the Gap between the Expected and Actual Deployment of Carbon Capture and Storage—A Bibliometric Analysis," Energies, MDPI, vol. 11(9), pages 1-45, September.
    2. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Peak of CO2 emissions in various sectors and provinces of China: Recent progress and avenues for further research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 813-833.
    3. Luo, Shihua & Hu, Weihao & Liu, Wen & Zhang, Zhenyuan & Bai, Chunguang & Huang, Qi & Chen, Zhe, 2022. "Study on the decarbonization in China's power sector under the background of carbon neutrality by 2060," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    4. Thushara, De Silva M. & Hornberger, George M. & Baroud, Hiba, 2019. "Decision analysis to support the choice of a future power generation pathway for Sri Lanka," Applied Energy, Elsevier, vol. 240(C), pages 680-697.
    5. Tamaki, Tetsuya & Nozawa, Wataru & Managi, Shunsuke, 2017. "Evaluation of the ocean ecosystem: Climate change modelling with backstop technologies," Applied Energy, Elsevier, vol. 205(C), pages 428-439.
    6. Tamaki, Tetsuya & Nozawa, Wataru & Managi, Shunsuke, 2017. "Evaluation of the ocean ecosystem: climate change modelling with backstop technology," MPRA Paper 80549, University Library of Munich, Germany.
    7. Tapia, John Frederick D. & Lee, Jui-Yuan & Ooi, Raymond E.H. & Foo, Dominic C.Y. & Tan, Raymond R., 2016. "Optimal CO2 allocation and scheduling in enhanced oil recovery (EOR) operations," Applied Energy, Elsevier, vol. 184(C), pages 337-345.
    8. Al-Qahtani, Amjad & González-Garay, Andrés & Bernardi, Andrea & Galán-Martín, Ángel & Pozo, Carlos & Dowell, Niall Mac & Chachuat, Benoit & Guillén-Gosálbez, Gonzalo, 2020. "Electricity grid decarbonisation or green methanol fuel? A life-cycle modelling and analysis of today′s transportation-power nexus," Applied Energy, Elsevier, vol. 265(C).
    9. Olimpia Neagu, 2019. "The Link between Economic Complexity and Carbon Emissions in the European Union Countries: A Model Based on the Environmental Kuznets Curve (EKC) Approach," Sustainability, MDPI, vol. 11(17), pages 1-27, August.
    10. Qin, Changlei & Yin, Junjun & Feng, Bo & Ran, Jingyu & Zhang, Li & Manovic, Vasilije, 2016. "Modelling of the calcination behaviour of a uniformly-distributed CuO/CaCO3 particle in Ca–Cu chemical looping," Applied Energy, Elsevier, vol. 164(C), pages 400-410.
    11. Kim, Dongin & Han, Jeehoon, 2020. "Comprehensive analysis of two catalytic processes to produce formic acid from carbon dioxide," Applied Energy, Elsevier, vol. 264(C).
    12. Guo, Xiaolu & Yan, Xingqing & Zheng, Yangguang & Yu, Jianliang & Zhang, Yongchun & Chen, Shaoyun & Chen, Lin & Mahgerefteh, Haroun & Martynov, Sergey & Collard, Alexander & Brown, Solomon, 2017. "Under-expanded jets and dispersion in high pressure CO2 releases from an industrial scale pipeline," Energy, Elsevier, vol. 119(C), pages 53-66.
    13. Li, Yan & Feng, Tian-tian & Liu, Li-li & Zhang, Meng-xi, 2023. "How do the electricity market and carbon market interact and achieve integrated development?--A bibliometric-based review," Energy, Elsevier, vol. 265(C).
    14. Navarro, J.C. & Baena-Moreno, F.M. & Centeno, M.A. & Laguna, O.H. & Almagro, J.F. & Odriozola, J.A., 2023. "Process design and utilisation strategy for CO2 capture in flue gases. Technical assessment and preliminary economic approach for steel mills," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    15. Lorraine Whitmarsh & Dimitrios Xenias & Christopher R. Jones, 2019. "Framing effects on public support for carbon capture and storage," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-10, December.
    16. Galusnyak, Stefan Cristian & Petrescu, Letitia & Chisalita, Dora Andreea & Cormos, Calin-Cristian, 2022. "Life cycle assessment of methanol production and conversion into various chemical intermediates and products," Energy, Elsevier, vol. 259(C).
    17. Crivellari, Anna & Cozzani, Valerio & Dincer, Ibrahim, 2019. "Exergetic and exergoeconomic analyses of novel methanol synthesis processes driven by offshore renewable energies," Energy, Elsevier, vol. 187(C).
    18. Baena-Moreno, Francisco M. & Sebastia-Saez, Daniel & Pastor-Pérez, Laura & Reina, Tomas Ramirez, 2021. "Analysis of the potential for biogas upgrading to syngas via catalytic reforming in the United Kingdom," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    19. Xu, Jiazhu & Yi, Yuqin, 2023. "Multi-microgrid low-carbon economy operation strategy considering both source and load uncertainty: A Nash bargaining approach," Energy, Elsevier, vol. 263(PB).
    20. Giorgetti, S. & Bricteux, L. & Parente, A. & Blondeau, J. & Contino, F. & De Paepe, W., 2017. "Carbon capture on micro gas turbine cycles: Assessment of the performance on dry and wet operations," Applied Energy, Elsevier, vol. 207(C), pages 243-253.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1528-:d:152105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.