IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i6p1492-d151283.html
   My bibliography  Save this article

Fault Detection and Location of IGBT Short-Circuit Failure in Modular Multilevel Converters

Author

Listed:
  • Bin Jiang

    (Department of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China)

  • Yanfeng Gong

    (Department of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China)

  • Yan Li

    (Department of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China)

Abstract

A single fault detection and location for Modular Multilevel Converter (MMC) is of great significance, as numbers of sub-modules (SMs) in MMC are connected in series. In this paper, a novel fault detection and location method is proposed for MMC in terms of the Insulated Gate Bipolar Translator (IGBT) short-circuit failure in SM. The characteristics of IGBT short-circuit failures are analyzed, based on which a Differential Comparison Low-Voltage Detection Method (DCLVDM) is proposed to detect the short-circuit fault. Lastly, the faulty IGBT is located based on the capacitor voltage of the faulty SM by Continuous Wavelet Transform (CWT). Simulations have been done in the simulation software PSCAD/EMTDC and the results confirm the validity and reliability of the proposed method.

Suggested Citation

  • Bin Jiang & Yanfeng Gong & Yan Li, 2018. "Fault Detection and Location of IGBT Short-Circuit Failure in Modular Multilevel Converters," Energies, MDPI, vol. 11(6), pages 1-13, June.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1492-:d:151283
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/6/1492/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/6/1492/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wu, Jie & Wang, Zhi-Xin & Xu, Lie & Wang, Guo-Qiang, 2014. "Key technologies of VSC-HVDC and its application on offshore wind farm in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 247-255.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nansheng Pang & Wenjing Guo, 2019. "Uncertain Hybrid Multiple Attribute Group Decision of Offshore Wind Power Transmission Mode Based on theVIKOR Method," Sustainability, MDPI, vol. 11(21), pages 1-21, November.
    2. Tsai, Yu-Ching & Huang, Yu-Fen & Yang, Jing-Tang, 2016. "Strategies for the development of offshore wind technology for far-east countries – A point of view from patent analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 182-194.
    3. He, Zheng-Xia & Xu, Shi-Chun & Shen, Wen-Xing & Zhang, Hui & Long, Ru-Yin & Yang, He & Chen, Hong, 2016. "Review of factors affecting China’s offshore wind power industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1372-1386.
    4. Zhang, Yuhan & Wang, Shunliang & Liu, Tianqi & Zhang, Shu & Lu, Qingyuan, 2021. "A traveling-wave-based protection scheme for the bipolar voltage source converter based high voltage direct current (VSC-HVDC) transmission lines in renewable energy integration," Energy, Elsevier, vol. 216(C).
    5. Ebrahim, M.A. & Ahmed, M.N. & Ramadan, H.S. & Becherif, M. & Zhao, J., 2021. "Optimal metaheuristic-based sliding mode control of VSC-HVDC transmission systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 179(C), pages 178-193.
    6. Binkai, Jiang & Zhixin, Wang, 2016. "The key technologies of VSC-MTDC and its application in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 297-304.
    7. Li, Yang & Li, Yahui & Li, Guoqing & Zhao, Dongbo & Chen, Chen, 2018. "Two-stage multi-objective OPF for AC/DC grids with VSC-HVDC: Incorporating decisions analysis into optimization process," Energy, Elsevier, vol. 147(C), pages 286-296.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1492-:d:151283. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.