IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i6p1439-d150498.html
   My bibliography  Save this article

Power and Capacity Consensus Tracking of Distributed Battery Storage Systems in Modular Microgrids

Author

Listed:
  • Xianyong Zhang

    (School of Automation, Guangdong Polytechnic Normal University, Guangzhou 510665, China)

  • Yaohong Huang

    (School of Automation, Guangdong Polytechnic Normal University, Guangzhou 510665, China)

  • Li Li

    (School of Automation, Guangdong Polytechnic Normal University, Guangzhou 510665, China)

  • Wei-Chang Yeh

    (Integration and Collaboration Laboratory, Department of Industrial Engineering and Engineering Management, National Tsing Hua University, Hsinchu 46804804, Taiwan)

Abstract

Conventional microgrids have a specific system configuration and a complex hierarchical control structure, which has resulted in difficulties in their economic development. A modular microgrid based on distributed battery storage has been proposed to realize the rapid economic development of small-to-medium microgrids. Control of modular microgrids is simplified to voltage control within modules and exchange power control among modules. Battery power has great influence on battery performance. Space-time complementary power characteristics among modules help to alleviate power fluctuations, prolong the service life and realize the unified maintenance of distributed batteries. Leader-following consensus theory of multi-agent systems is adopted to realize the power and capacity consensus tracking of distributed battery storage in a modular microgrid. Sufficient and necessary conditions for continuous-time and sampled-data bounded power and capacity consensus tracking of distributed battery storages are deduced by a matrix analytical method. Steady regions of sampling period and sampling delay for sampled-data bounded power and capacity consensus tracking are determined by analytical or numerical solutions. Simulations and experiments on a modular microgrid demonstration project located on DongAo Island (China) show the effectiveness and robustness of the proposed power and capacity consensus tracking strategy for distributed storage systems. The power and capacity consensus tracking strategy determines the exchange power among modules and improves the control technology of modular microgrids.

Suggested Citation

  • Xianyong Zhang & Yaohong Huang & Li Li & Wei-Chang Yeh, 2018. "Power and Capacity Consensus Tracking of Distributed Battery Storage Systems in Modular Microgrids," Energies, MDPI, vol. 11(6), pages 1-25, June.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1439-:d:150498
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/6/1439/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/6/1439/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stadler, Michael & Cardoso, Gonçalo & Mashayekh, Salman & Forget, Thibault & DeForest, Nicholas & Agarwal, Ankit & Schönbein, Anna, 2016. "Value streams in microgrids: A literature review," Applied Energy, Elsevier, vol. 162(C), pages 980-989.
    2. Chmiel, Zbigniew & Bhattacharyya, Subhes C., 2015. "Analysis of off-grid electricity system at Isle of Eigg (Scotland): Lessons for developing countries," Renewable Energy, Elsevier, vol. 81(C), pages 578-588.
    3. Wang, Jianxiao & Zhong, Haiwang & Tang, Wenyuan & Rajagopal, Ram & Xia, Qing & Kang, Chongqing & Wang, Yi, 2017. "Optimal bidding strategy for microgrids in joint energy and ancillary service markets considering flexible ramping products," Applied Energy, Elsevier, vol. 205(C), pages 294-303.
    4. Marzband, Mousa & Sumper, Andreas & Ruiz-Álvarez, Albert & Domínguez-García, José Luis & Tomoiagă, Bogdan, 2013. "Experimental evaluation of a real time energy management system for stand-alone microgrids in day-ahead markets," Applied Energy, Elsevier, vol. 106(C), pages 365-376.
    5. Hu, Jiangping & Hong, Yiguang, 2007. "Leader-following coordination of multi-agent systems with coupling time delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(2), pages 853-863.
    6. Marzband, Mousa & Azarinejadian, Fatemeh & Savaghebi, Mehdi & Pouresmaeil, Edris & Guerrero, Josep M. & Lightbody, Gordon, 2018. "Smart transactive energy framework in grid-connected multiple home microgrids under independent and coalition operations," Renewable Energy, Elsevier, vol. 126(C), pages 95-106.
    7. Riverso, Stefano & Tucci, Michele & Vasquez, Juan C. & Guerrero, Josep M. & Ferrari-Trecate, Giancarlo, 2018. "Stabilizing plug-and-play regulators and secondary coordinated control for AC islanded microgrids with bus-connected topology," Applied Energy, Elsevier, vol. 210(C), pages 914-924.
    8. Zhang, Xiaoshun & Yu, Tao & Yang, Bo & Li, Li, 2016. "Virtual generation tribe based robust collaborative consensus algorithm for dynamic generation command dispatch optimization of smart grid," Energy, Elsevier, vol. 101(C), pages 34-51.
    9. Xianyong Zhang & Wei-chang Yeh & Yunzhi Jiang & Yaohong Huang & Yingwang Xiao & Li Li, 2018. "A Case Study of Control and Improved Simplified Swarm Optimization for Economic Dispatch of a Stand-Alone Modular Microgrid," Energies, MDPI, vol. 11(4), pages 1-21, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yilun Shang, 2018. "Resilient Multiscale Coordination Control against Adversarial Nodes," Energies, MDPI, vol. 11(7), pages 1-17, July.
    2. Srete Nikolovski & Hamid Reza Baghaee & Dragan Mlakić, 2018. "ANFIS-Based Peak Power Shaving/Curtailment in Microgrids Including PV Units and BESSs," Energies, MDPI, vol. 11(11), pages 1-23, October.
    3. Daniele Ferreira & Sidelmo Silva & Waner Silva & Danilo Brandao & Gilbert Bergna & Elisabetta Tedeschi, 2022. "Overview of Consensus Protocol and Its Application to Microgrid Control," Energies, MDPI, vol. 15(22), pages 1-35, November.
    4. Yeh, Wei-Chang & He, Min-Fan & Huang, Chia-Ling & Tan, Shi-Yi & Zhang, Xianyong & Huang, Yaohong & Li, Li, 2020. "New genetic algorithm for economic dispatch of stand-alone three-modular microgrid in DongAo Island," Applied Energy, Elsevier, vol. 263(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El-Sharafy, M. Zaki & Farag, Hany E.Z., 2017. "Back-feed power restoration using distributed constraint optimization in smart distribution grids clustered into microgrids," Applied Energy, Elsevier, vol. 206(C), pages 1102-1117.
    2. Guido Cavraro & Tommaso Caldognetto & Ruggero Carli & Paolo Tenti, 2019. "A Master/Slave Approach to Power Flow and Overvoltage Control in Low-Voltage Microgrids," Energies, MDPI, vol. 12(14), pages 1-22, July.
    3. Mi, Yang & Chen, Xin & Ji, Hongpeng & Ji, Liang & Fu, Yang & Wang, Chengshan & Wang, Jianhui, 2019. "The coordinated control strategy for isolated DC microgrid based on adaptive storage adjustment without communication," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    4. Brandao, Danilo I. & de Araújo, Lucas S. & Caldognetto, Tommaso & Pomilio, José A., 2018. "Coordinated control of three- and single-phase inverters coexisting in low-voltage microgrids," Applied Energy, Elsevier, vol. 228(C), pages 2050-2060.
    5. Yeh, Wei-Chang & He, Min-Fan & Huang, Chia-Ling & Tan, Shi-Yi & Zhang, Xianyong & Huang, Yaohong & Li, Li, 2020. "New genetic algorithm for economic dispatch of stand-alone three-modular microgrid in DongAo Island," Applied Energy, Elsevier, vol. 263(C).
    6. Zenginis, Ioannis & Vardakas, John S. & Echave, Cynthia & Morató, Moisés & Abadal, Jordi & Verikoukis, Christos V., 2017. "Cooperation in microgrids through power exchange: An optimal sizing and operation approach," Applied Energy, Elsevier, vol. 203(C), pages 972-981.
    7. Gui, Yonghao & Wei, Baoze & Li, Mingshen & Guerrero, Josep M. & Vasquez, Juan C., 2018. "Passivity-based coordinated control for islanded AC microgrid," Applied Energy, Elsevier, vol. 229(C), pages 551-561.
    8. Restrepo, Mauricio & Cañizares, Claudio A. & Simpson-Porco, John W. & Su, Peter & Taruc, John, 2021. "Optimization- and Rule-based Energy Management Systems at the Canadian Renewable Energy Laboratory microgrid facility," Applied Energy, Elsevier, vol. 290(C).
    9. Andoni, Merlinda & Robu, Valentin & Flynn, David & Abram, Simone & Geach, Dale & Jenkins, David & McCallum, Peter & Peacock, Andrew, 2019. "Blockchain technology in the energy sector: A systematic review of challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 143-174.
    10. Jian, Long & Hu, Jiangping & Wang, Jun & Shi, Kaibo, 2019. "Observer-based output feedback distributed event-triggered control for linear multi-agent systems under general directed graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    11. Doumen, Sjoerd C. & Nguyen, Phuong & Kok, Koen, 2022. "Challenges for large-scale Local Electricity Market implementation reviewed from the stakeholder perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    12. Jing Bai & Guoguang Wen & Ahmed Rahmani & Xing Chu & Yongguang Yu, 2016. "Consensus with a reference state for fractional-order multi-agent systems," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(1), pages 222-234, January.
    13. Jaber Valinejad & Mousa Marzband & Michael Elsdon & Ameena Saad Al-Sumaiti & Taghi Barforoushi, 2019. "Dynamic Carbon-Constrained EPEC Model for Strategic Generation Investment Incentives with the Aim of Reducing CO 2 Emissions," Energies, MDPI, vol. 12(24), pages 1-35, December.
    14. Aouss Gabash & Pu Li, 2016. "On Variable Reverse Power Flow-Part II: An Electricity Market Model Considering Wind Station Size and Location," Energies, MDPI, vol. 9(4), pages 1-13, March.
    15. Bahramara, S. & Moghaddam, M. Parsa & Haghifam, M.R., 2016. "Optimal planning of hybrid renewable energy systems using HOMER: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 609-620.
    16. Konečná, Eva & Teng, Sin Yong & Máša, Vítězslav, 2020. "New insights into the potential of the gas microturbine in microgrids and industrial applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    17. Bhowmik, Chiranjib & Bhowmik, Sumit & Ray, Amitava & Pandey, Krishna Murari, 2017. "Optimal green energy planning for sustainable development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 796-813.
    18. Jingpeng Yue & Zhijian Hu & Amjad Anvari-Moghaddam & Josep M. Guerrero, 2019. "A Multi-Market-Driven Approach to Energy Scheduling of Smart Microgrids in Distribution Networks," Sustainability, MDPI, vol. 11(2), pages 1-16, January.
    19. Thomas Sachs & Anna Gründler & Milos Rusic & Gilbert Fridgen, 2019. "Framing Microgrid Design from a Business and Information Systems Engineering Perspective," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 61(6), pages 729-744, December.
    20. Miguel Carpintero-Rentería & David Santos-Martín & Josep M. Guerrero, 2019. "Microgrids Literature Review through a Layers Structure," Energies, MDPI, vol. 12(22), pages 1-22, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1439-:d:150498. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.