IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i11p3032-d180574.html
   My bibliography  Save this article

Investigation of an Innovative Cascade Cycle Combining a Trilateral Cycle and an Organic Rankine Cycle (TLC-ORC) for Industry or Transport Application

Author

Listed:
  • Xiaoli Yu

    (Department of Energy Engineering, Zhejiang University, Hangzhou 310027, China
    Sir Joseph Swan Centre for Energy Research, Newcastle University, Newcastle NE1 7RU, UK)

  • Zhi Li

    (Department of Energy Engineering, Zhejiang University, Hangzhou 310027, China
    Sir Joseph Swan Centre for Energy Research, Newcastle University, Newcastle NE1 7RU, UK)

  • Yiji Lu

    (Department of Energy Engineering, Zhejiang University, Hangzhou 310027, China
    Sir Joseph Swan Centre for Energy Research, Newcastle University, Newcastle NE1 7RU, UK)

  • Rui Huang

    (Department of Energy Engineering, Zhejiang University, Hangzhou 310027, China)

  • Anthony Paul Roskilly

    (Department of Energy Engineering, Zhejiang University, Hangzhou 310027, China
    Sir Joseph Swan Centre for Energy Research, Newcastle University, Newcastle NE1 7RU, UK)

Abstract

An innovative cascade cycle combining a trilateral cycle and an organic Rankine cycle (TLC-ORC) system is proposed in this paper. The proposed TLC-ORC system aims at obtaining better performance of temperature matching between working fluid and heat source, leading to better overall system performance than that of the conventional dual-loop ORC system. The proposed cascade cycle adopts TLC to replace the High-Temperature (HT) cycle of the conventional dual-loop ORC system. The comprehensive comparisons between the conventional dual-loop ORC and the proposed TLC-ORC system have been conducted using the first and second law analysis. Effects of evaporating temperature for HT and Low-Temperature (LT) cycle, as well as different HT and LT working fluids, are systematically investigated. The comparisons of exergy destruction and exergy efficiency of each component in the two systems have been studied. Results illustrate that the maximum net power output, thermal efficiency, and exergy efficiency of a conventional dual-loop ORC are 8.8 kW, 18.7%, and 50.0%, respectively, obtained by the system using cyclohexane as HT working fluid at T HT,evap = 470 K and T LT,evap = 343 K. While for the TLC-ORC, the corresponding values are 11.8 kW, 25.0%, and 65.6%, obtained by the system using toluene as a HT working fluid at T HT,evap = 470 K and T LT,evap = 343 K, which are 34.1%, 33.7%, and 31.2% higher than that of a conventional dual-loop ORC.

Suggested Citation

  • Xiaoli Yu & Zhi Li & Yiji Lu & Rui Huang & Anthony Paul Roskilly, 2018. "Investigation of an Innovative Cascade Cycle Combining a Trilateral Cycle and an Organic Rankine Cycle (TLC-ORC) for Industry or Transport Application," Energies, MDPI, vol. 11(11), pages 1-22, November.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3032-:d:180574
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/11/3032/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/11/3032/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yu, Zhibin & Jaworski, Artur J. & Backhaus, Scott, 2012. "Travelling-wave thermoacoustic electricity generator using an ultra-compliant alternator for utilization of low-grade thermal energy," Applied Energy, Elsevier, vol. 99(C), pages 135-145.
    2. Wang, E.H. & Zhang, H.G. & Zhao, Y. & Fan, B.Y. & Wu, Y.T. & Mu, Q.H., 2012. "Performance analysis of a novel system combining a dual loop organic Rankine cycle (ORC) with a gasoline engine," Energy, Elsevier, vol. 43(1), pages 385-395.
    3. Lu, Yiji & Roskilly, Anthony Paul & Tang, Ke & Wang, Yaodong & Jiang, Long & Yuan, Ye & Wang, Liwei, 2017. "Investigation and performance study of a dual-source chemisorption power generation cycle using scroll expander," Applied Energy, Elsevier, vol. 204(C), pages 979-993.
    4. Ajimotokan, H.A. & Sher, I., 2015. "Thermodynamic performance simulation and design optimisation of trilateral-cycle engines for waste heat recovery-to-power generation," Applied Energy, Elsevier, vol. 154(C), pages 26-34.
    5. Shu, Gequn & Liu, Lina & Tian, Hua & Wei, Haiqiao & Yu, Guopeng, 2014. "Parametric and working fluid analysis of a dual-loop organic Rankine cycle (DORC) used in engine waste heat recovery," Applied Energy, Elsevier, vol. 113(C), pages 1188-1198.
    6. Ramos, Alba & Chatzopoulou, Maria Anna & Freeman, James & Markides, Christos N., 2018. "Optimisation of a high-efficiency solar-driven organic Rankine cycle for applications in the built environment," Applied Energy, Elsevier, vol. 228(C), pages 755-765.
    7. Yari, M. & Mehr, A.S. & Zare, V. & Mahmoudi, S.M.S. & Rosen, M.A., 2015. "Exergoeconomic comparison of TLC (trilateral Rankine cycle), ORC (organic Rankine cycle) and Kalina cycle using a low grade heat source," Energy, Elsevier, vol. 83(C), pages 712-722.
    8. Fischer, Johann, 2011. "Comparison of trilateral cycles and organic Rankine cycles," Energy, Elsevier, vol. 36(10), pages 6208-6219.
    9. Tian, Hua & Shu, Gequn & Wei, Haiqiao & Liang, Xingyu & Liu, Lina, 2012. "Fluids and parameters optimization for the organic Rankine cycles (ORCs) used in exhaust heat recovery of Internal Combustion Engine (ICE)," Energy, Elsevier, vol. 47(1), pages 125-136.
    10. Zhang, H.G. & Wang, E.H. & Fan, B.Y., 2013. "A performance analysis of a novel system of a dual loop bottoming organic Rankine cycle (ORC) with a light-duty diesel engine," Applied Energy, Elsevier, vol. 102(C), pages 1504-1513.
    11. Solanki, Roochi & Mathie, Richard & Galindo, Amparo & Markides, Christos N., 2013. "Modelling of a two-phase thermofluidic oscillator for low-grade heat utilisation: Accounting for irreversible thermal losses," Applied Energy, Elsevier, vol. 106(C), pages 337-354.
    12. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
    13. Imran, Muhammad & Usman, Muhammad & Park, Byung-Sik & Lee, Dong-Hyun, 2016. "Volumetric expanders for low grade heat and waste heat recovery applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1090-1109.
    14. Chen, Huijuan & Goswami, D. Yogi & Rahman, Muhammad M. & Stefanakos, Elias K., 2011. "A supercritical Rankine cycle using zeotropic mixture working fluids for the conversion of low-grade heat into power," Energy, Elsevier, vol. 36(1), pages 549-555.
    15. Vaja, Iacopo & Gambarotta, Agostino, 2010. "Internal Combustion Engine (ICE) bottoming with Organic Rankine Cycles (ORCs)," Energy, Elsevier, vol. 35(2), pages 1084-1093.
    16. Song, Jian & Gu, Chun-wei, 2015. "Performance analysis of a dual-loop organic Rankine cycle (ORC) system with wet steam expansion for engine waste heat recovery," Applied Energy, Elsevier, vol. 156(C), pages 280-289.
    17. Shu, Gequn & Gao, Yuanyuan & Tian, Hua & Wei, Haiqiao & Liang, Xingyu, 2014. "Study of mixtures based on hydrocarbons used in ORC (Organic Rankine Cycle) for engine waste heat recovery," Energy, Elsevier, vol. 74(C), pages 428-438.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jovana Radulovic, 2023. "Organic Rankine Cycle: Effective Applications and Technological Advances," Energies, MDPI, vol. 16(5), pages 1-3, February.
    2. Shiqi Wang & Zhongyuan Yuan, 2020. "A Hot Water Split-Flow Dual-Pressure Strategy to Improve System Performance for Organic Rankine Cycle," Energies, MDPI, vol. 13(13), pages 1-21, June.
    3. Khouya, Ahmed, 2022. "Performance analysis and optimization of a trilateral organic Rankine powered by a concentrated photovoltaic thermal system," Energy, Elsevier, vol. 247(C).
    4. Yu, Xiaoli & Li, Zhi & Lu, Yiji & Huang, Rui & Roskilly, Anthony Paul, 2019. "Investigation of organic Rankine cycle integrated with double latent thermal energy storage for engine waste heat recovery," Energy, Elsevier, vol. 170(C), pages 1098-1112.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chintala, Venkateswarlu & Kumar, Suresh & Pandey, Jitendra K., 2018. "A technical review on waste heat recovery from compression ignition engines using organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 493-509.
    2. Hoang, Anh Tuan, 2018. "Waste heat recovery from diesel engines based on Organic Rankine Cycle," Applied Energy, Elsevier, vol. 231(C), pages 138-166.
    3. Yang, Min-Hsiung, 2016. "Optimizations of the waste heat recovery system for a large marine diesel engine based on transcritical Rankine cycle," Energy, Elsevier, vol. 113(C), pages 1109-1124.
    4. Zhai, Huixing & An, Qingsong & Shi, Lin & Lemort, Vincent & Quoilin, Sylvain, 2016. "Categorization and analysis of heat sources for organic Rankine cycle systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 790-805.
    5. Yu, Xiaoli & Li, Zhi & Lu, Yiji & Huang, Rui & Roskilly, Anthony Paul, 2019. "Investigation of organic Rankine cycle integrated with double latent thermal energy storage for engine waste heat recovery," Energy, Elsevier, vol. 170(C), pages 1098-1112.
    6. Yang, Fubin & Zhang, Hongguang & Yu, Zhibin & Wang, Enhua & Meng, Fanxiao & Liu, Hongda & Wang, Jingfu, 2017. "Parametric optimization and heat transfer analysis of a dual loop ORC (organic Rankine cycle) system for CNG engine waste heat recovery," Energy, Elsevier, vol. 118(C), pages 753-775.
    7. Jiménez-Arreola, Manuel & Wieland, Christoph & Romagnoli, Alessandro, 2019. "Direct vs indirect evaporation in Organic Rankine Cycle (ORC) systems: A comparison of the dynamic behavior for waste heat recovery of engine exhaust," Applied Energy, Elsevier, vol. 242(C), pages 439-452.
    8. Choi, Byung Chul & Kim, Young Min, 2013. "Thermodynamic analysis of a dual loop heat recovery system with trilateral cycle applied to exhaust gases of internal combustion engine for propulsion of the 6800 TEU container ship," Energy, Elsevier, vol. 58(C), pages 404-416.
    9. Yang, Fubin & Cho, Heejin & Zhang, Hongguang & Zhang, Jian, 2017. "Thermoeconomic multi-objective optimization of a dual loop organic Rankine cycle (ORC) for CNG engine waste heat recovery," Applied Energy, Elsevier, vol. 205(C), pages 1100-1118.
    10. Yang, Fubin & Zhang, Hongguang & Song, Songsong & Bei, Chen & Wang, Hongjin & Wang, Enhua, 2015. "Thermoeconomic multi-objective optimization of an organic Rankine cycle for exhaust waste heat recovery of a diesel engine," Energy, Elsevier, vol. 93(P2), pages 2208-2228.
    11. Mat Nawi, Z. & Kamarudin, S.K. & Sheikh Abdullah, S.R. & Lam, S.S., 2019. "The potential of exhaust waste heat recovery (WHR) from marine diesel engines via organic rankine cycle," Energy, Elsevier, vol. 166(C), pages 17-31.
    12. Ziviani, Davide & Beyene, Asfaw & Venturini, Mauro, 2014. "Advances and challenges in ORC systems modeling for low grade thermal energy recovery," Applied Energy, Elsevier, vol. 121(C), pages 79-95.
    13. Marenco-Porto, Carlos A. & Fierro, José J. & Nieto-Londoño, César & Lopera, Leonardo & Escudero-Atehortua, Ana & Giraldo, Mauricio & Jouhara, Hussam, 2023. "Potential savings in the cement industry using waste heat recovery technologies," Energy, Elsevier, vol. 279(C).
    14. Rosset, Kévin & Mounier, Violette & Guenat, Eliott & Schiffmann, Jürg, 2018. "Multi-objective optimization of turbo-ORC systems for waste heat recovery on passenger car engines," Energy, Elsevier, vol. 159(C), pages 751-765.
    15. Braimakis, Konstantinos & Karellas, Sotirios, 2023. "Exergy efficiency potential of dual-phase expansion trilateral and partial evaporation ORC with zeotropic mixtures," Energy, Elsevier, vol. 262(PB).
    16. Fuhaid Alshammari & Apostolos Karvountzis-Kontakiotis & Apostolos Pesyridis & Muhammad Usman, 2018. "Expander Technologies for Automotive Engine Organic Rankine Cycle Applications," Energies, MDPI, vol. 11(7), pages 1-36, July.
    17. Wang, Shiqi & Yuan, Zhongyuan & Yu, Nanyang, 2023. "Thermo-economic optimization of organic Rankine cycle with steam-water dual heat source," Energy, Elsevier, vol. 274(C).
    18. Shu, Gequn & Shi, Lingfeng & Tian, Hua & Deng, Shuai & Li, Xiaoya & Chang, Liwen, 2017. "Configurations selection maps of CO2-based transcritical Rankine cycle (CTRC) for thermal energy management of engine waste heat," Applied Energy, Elsevier, vol. 186(P3), pages 423-435.
    19. Youcef Redjeb & Khatima Kaabeche-Djerafi & Anna Stoppato & Alberto Benato, 2021. "The IRC-PD Tool: A Code to Design Steam and Organic Waste Heat Recovery Units," Energies, MDPI, vol. 14(18), pages 1-37, September.
    20. Nikunj Gangar & Sandro Macchietto & Christos N. Markides, 2020. "Recovery and Utilization of Low-Grade Waste Heat in the Oil-Refining Industry Using Heat Engines and Heat Pumps: An International Technoeconomic Comparison," Energies, MDPI, vol. 13(10), pages 1-29, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3032-:d:180574. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.