IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i7p972-d104347.html
   My bibliography  Save this article

An Enhanced Empirical Wavelet Transform for Features Extraction from Wind Turbine Condition Monitoring Signals

Author

Listed:
  • Pu Shi

    (School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China)

  • Wenxian Yang

    (School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
    Hunan Province Cooperative Innovation Centre for Wind Power Equipment and Energy Conversion, Hunan Institute of Engineering, Xiangtan 411104, China)

  • Meiping Sheng

    (School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China)

  • Minqing Wang

    (School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China)

Abstract

Feature extraction from nonlinear and non-stationary (NNS) wind turbine (WT) condition monitoring (CM) signals is challenging. Previously, much effort has been spent to develop advanced signal processing techniques for dealing with CM signals of this kind. The Empirical Wavelet Transform (EWT) is one of the achievements attributed to these efforts. The EWT takes advantage of Empirical Mode Decomposition (EMD) in dealing with NNS signals but is superior to the EMD in mode decomposition and robustness against noise. However, the conventional EWT meets difficulty in properly segmenting the frequency spectrum of the signal, especially when lacking pre-knowledge of the signal. The inappropriate segmentation of the signal spectrum will inevitably lower the accuracy of the EWT result and thus raise the difficulty of WT CM. To address this issue, an enhanced EWT is proposed in this paper by developing a feasible and efficient spectrum segmentation method. The effectiveness of the proposed method has been verified by using the bearing and gearbox CM data that are open to the public for the purpose of research. The experiment has shown that, after adopting the proposed method, it becomes much easier and more reliable to segment the frequency spectrum of the signal. Moreover, benefitting from the correct segmentation of the signal spectrum, the fault-related features of the CM signals are presented more explicitly in the time-frequency map of the enhanced EWT, despite the considerable noise contained in the signal and the shortage of pre-knowledge about the machine being investigated.

Suggested Citation

  • Pu Shi & Wenxian Yang & Meiping Sheng & Minqing Wang, 2017. "An Enhanced Empirical Wavelet Transform for Features Extraction from Wind Turbine Condition Monitoring Signals," Energies, MDPI, vol. 10(7), pages 1-13, July.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:972-:d:104347
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/7/972/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/7/972/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Wenxian & Little, Christian & Court, Richard, 2014. "S-Transform and its contribution to wind turbine condition monitoring," Renewable Energy, Elsevier, vol. 62(C), pages 137-146.
    2. Pierre Tchakoua & René Wamkeue & Mohand Ouhrouche & Fouad Slaoui-Hasnaoui & Tommy Andy Tameghe & Gabriel Ekemb, 2014. "Wind Turbine Condition Monitoring: State-of-the-Art Review, New Trends, and Future Challenges," Energies, MDPI, vol. 7(4), pages 1-36, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesco Castellani & Luigi Garibaldi & Alessandro Paolo Daga & Davide Astolfi & Francesco Natili, 2020. "Diagnosis of Faulty Wind Turbine Bearings Using Tower Vibration Measurements," Energies, MDPI, vol. 13(6), pages 1-18, March.
    2. David Watling & Patrícia Baptista & Gonçalo Duarte & Jianbing Gao & Haibo Chen, 2022. "Systematic Method for Developing Reference Driving Cycles Appropriate to Electric L-Category Vehicles," Energies, MDPI, vol. 15(9), pages 1-28, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xuejun & Yang, Yongming & Cui, Zhixin & Shen, Jun, 2019. "Vibration fault diagnosis of wind turbines based on variational mode decomposition and energy entropy," Energy, Elsevier, vol. 174(C), pages 1100-1109.
    2. Stetco, Adrian & Dinmohammadi, Fateme & Zhao, Xingyu & Robu, Valentin & Flynn, David & Barnes, Mike & Keane, John & Nenadic, Goran, 2019. "Machine learning methods for wind turbine condition monitoring: A review," Renewable Energy, Elsevier, vol. 133(C), pages 620-635.
    3. Ren, Zhengru & Verma, Amrit Shankar & Li, Ye & Teuwen, Julie J.E. & Jiang, Zhiyu, 2021. "Offshore wind turbine operations and maintenance: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    4. Lei Fu & Yanding Wei & Sheng Fang & Xiaojun Zhou & Junqiang Lou, 2017. "Condition Monitoring for Roller Bearings of Wind Turbines Based on Health Evaluation under Variable Operating States," Energies, MDPI, vol. 10(10), pages 1-21, October.
    5. Habibi, Hamed & Howard, Ian & Simani, Silvio, 2019. "Reliability improvement of wind turbine power generation using model-based fault detection and fault tolerant control: A review," Renewable Energy, Elsevier, vol. 135(C), pages 877-896.
    6. Arkaitz Rabanal & Alain Ulazia & Gabriel Ibarra-Berastegi & Jon Sáenz & Unai Elosegui, 2018. "MIDAS: A Benchmarking Multi-Criteria Method for the Identification of Defective Anemometers in Wind Farms," Energies, MDPI, vol. 12(1), pages 1-19, December.
    7. Przemyslaw Baranski & Piotr Pietrzak, 2016. "Computational Effective Fault Detection by Means of Signature Functions," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-20, March.
    8. Chen, Jinglong & Pan, Jun & Li, Zipeng & Zi, Yanyang & Chen, Xuefeng, 2016. "Generator bearing fault diagnosis for wind turbine via empirical wavelet transform using measured vibration signals," Renewable Energy, Elsevier, vol. 89(C), pages 80-92.
    9. Brooks, Sam & Mahmood, Minhal & Roy, Rajkumar & Manolesos, Marinos & Salonitis, Konstantinos, 2023. "Self-reconfiguration simulations of turbines to reduce uneven farm degradation," Renewable Energy, Elsevier, vol. 206(C), pages 1301-1314.
    10. Moynihan, Bridget & Moaveni, Babak & Liberatore, Sauro & Hines, Eric, 2022. "Estimation of blade forces in wind turbines using blade root strain measurements with OpenFAST verification," Renewable Energy, Elsevier, vol. 184(C), pages 662-676.
    11. Pierre Tchakoua & René Wamkeue & Mohand Ouhrouche & Tommy Andy Tameghe & Gabriel Ekemb, 2015. "A New Approach for Modeling Darrieus-Type Vertical Axis Wind Turbine Rotors Using Electrical Equivalent Circuit Analogy: Basis of Theoretical Formulations and Model Development," Energies, MDPI, vol. 8(10), pages 1-34, September.
    12. Odofin, Sarah & Bentley, Edward & Aikhuele, Daniel, 2018. "Robust fault estimation for wind turbine energy via hybrid systems," Renewable Energy, Elsevier, vol. 120(C), pages 289-299.
    13. Liang, Jinping & Zhang, Ke & Al-Durra, Ahmed & Zhou, Daming, 2020. "A novel fault diagnostic method in power converters for wind power generation system," Applied Energy, Elsevier, vol. 266(C).
    14. Jijian Lian & Ou Cai & Xiaofeng Dong & Qi Jiang & Yue Zhao, 2019. "Health Monitoring and Safety Evaluation of the Offshore Wind Turbine Structure: A Review and Discussion of Future Development," Sustainability, MDPI, vol. 11(2), pages 1-29, January.
    15. Luis M. Abadie & Nestor Goicoechea, 2021. "Old Wind Farm Life Extension vs. Full Repowering: A Review of Economic Issues and a Stochastic Application for Spain," Energies, MDPI, vol. 14(12), pages 1-24, June.
    16. Wei Teng & Xiaolong Zhang & Yibing Liu & Andrew Kusiak & Zhiyong Ma, 2016. "Prognosis of the Remaining Useful Life of Bearings in a Wind Turbine Gearbox," Energies, MDPI, vol. 10(1), pages 1-16, December.
    17. Kevin Leahy & Colm Gallagher & Peter O’Donovan & Ken Bruton & Dominic T. J. O’Sullivan, 2018. "A Robust Prescriptive Framework and Performance Metric for Diagnosing and Predicting Wind Turbine Faults Based on SCADA and Alarms Data with Case Study," Energies, MDPI, vol. 11(7), pages 1-21, July.
    18. Xin Wu & Hong Wang & Guoqian Jiang & Ping Xie & Xiaoli Li, 2019. "Monitoring Wind Turbine Gearbox with Echo State Network Modeling and Dynamic Threshold Using SCADA Vibration Data," Energies, MDPI, vol. 12(6), pages 1-19, March.
    19. Dao, Phong B., 2022. "On Wilcoxon rank sum test for condition monitoring and fault detection of wind turbines," Applied Energy, Elsevier, vol. 318(C).
    20. Xu, He-Yong & Qiao, Chen-Liang & Yang, Hui-Qiang & Ye, Zheng-Yin, 2017. "Delayed detached eddy simulation of the wind turbine airfoil S809 for angles of attack up to 90 degrees," Energy, Elsevier, vol. 118(C), pages 1090-1109.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:972-:d:104347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.