IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i5p731-d99271.html
   My bibliography  Save this article

A Critical Review on Processes and Energy Profile of the Australian Meat Processing Industry

Author

Listed:
  • Ihsan Hamawand

    (Hamawand for Research and Engineering Services, Toowoomba, QLD 4350, Australia)

  • Anas Ghadouani

    (Aquatic Ecology and Ecosystem Studies Group, School of Civil, Environmental and Mining Engineering, The University of Western Australia, Crawley, WA 6009, Australia)

  • Jochen Bundschuh

    (Institute for Agriculture and the Environment, The University of Southern Queensland, Toowoomba, QLD 4350, Australia)

  • Sara Hamawand

    (Hamawand for Research and Engineering Services, Toowoomba, QLD 4350, Australia)

  • Raed A. Al Juboori

    (Faculty of Health, Engineering and Sciences, The University of Southern Queensland, Toowoomba, QLD 4350, Australia)

  • Sayan Chakrabarty

    (Institute for Resilient Regions (IRR), University of Southern Queensland, Springfield, QLD 4300, Australia)

  • Talal Yusaf

    (Faculty of Health, Engineering and Sciences, The University of Southern Queensland, Toowoomba, QLD 4350, Australia)

Abstract

This review article addresses wastewater treatment methods in the red meat processing industry. The focus is on conventional chemicals currently in use for abattoir wastewater treatment and energy related aspects. In addition, this article discusses the use of cleaning and sanitizing agents at the meat processing facilities and their effect on decision making in regard to selecting the treatment methods. This study shows that cleaning chemicals are currently used at a concentration of 2% to 3% which will further be diluted with the bulk wastewater. For example, for an abattoir that produces 3500 m 3 /day wastewater and uses around 200 L (3%) acid and alkaline chemicals, the final concentration of these chemical will be around 0.00017%. For this reason, the effects of these chemicals on the treatment method and the environment are very limited. Chemical treatment is highly efficient in removing soluble and colloidal particles from the red meat processing industry wastewater. Actually, it is shown that, if chemical treatment has been applied, then biological treatment can only be included for the treatment of the solid waste by-product and/or for production of bioenergy. Chemical treatment is recommended in all cases and especially when the wastewater is required to be reused or released to water streams. This study also shows that energy consumption for chemical treatment units is insignificant while efficient compared to other physical or biological units. A combination of a main (ferric chloride) and an aid coagulant has shown to be efficient and cost-effective in treating abattoir wastewater. The cost of using this combination per cubic meter wastewater treated is 0.055 USD/m 3 compared to 0.11 USD/m 3 for alum and the amount of sludge produced is 77% less than that produced by alum. In addition, the residues of these chemicals in the wastewater and the sludge have a positive or no impact on biological processes. Energy consumption from a small wastewater treatment plant (WWTP) installed to recycle wastewater for a meet facility can be around $500,000.

Suggested Citation

  • Ihsan Hamawand & Anas Ghadouani & Jochen Bundschuh & Sara Hamawand & Raed A. Al Juboori & Sayan Chakrabarty & Talal Yusaf, 2017. "A Critical Review on Processes and Energy Profile of the Australian Meat Processing Industry," Energies, MDPI, vol. 10(5), pages 1-29, May.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:5:p:731-:d:99271
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/5/731/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/5/731/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Hongtao & Yang, Yi & Keller, Arturo A. & Li, Xiang & Feng, Shijin & Dong, Ya-nan & Li, Fengting, 2016. "Comparative analysis of energy intensity and carbon emissions in wastewater treatment in USA, Germany, China and South Africa," Applied Energy, Elsevier, vol. 184(C), pages 873-881.
    2. Gu, Yifan & Li, Yue & Li, Xuyao & Luo, Pengzhou & Wang, Hongtao & Robinson, Zoe P. & Wang, Xin & Wu, Jiang & Li, Fengting, 2017. "The feasibility and challenges of energy self-sufficient wastewater treatment plants," Applied Energy, Elsevier, vol. 204(C), pages 1463-1475.
    3. Kaygusuz, Kamil, 2012. "Energy for sustainable development: A case of developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1116-1126.
    4. Tee, Pei Fang & Abdullah, Mohammad Omar & Tan, Ivy Ai Wei & Rashid, Nur Khairunnisa Abdul & Amin, Mohamed Afizal Mohamed & Nolasco-Hipolito, Cirilo & Bujang, Kopli, 2016. "Review on hybrid energy systems for wastewater treatment and bio-energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 235-246.
    5. Hamawand, Ihsan, 2015. "Anaerobic digestion process and bio-energy in meat industry: A review and a potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 37-51.
    6. Li, Weiyi & Krantz, William B. & Cornelissen, Emile R. & Post, Jan W. & Verliefde, Arne R.D. & Tang, Chuyang Y., 2013. "A novel hybrid process of reverse electrodialysis and reverse osmosis for low energy seawater desalination and brine management," Applied Energy, Elsevier, vol. 104(C), pages 592-602.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Setyo Budi Kurniawan & Siti Rozaimah Sheikh Abdullah & Muhammad Fauzul Imron & Nor Sakinah Mohd Said & Nur 'Izzati Ismail & Hassimi Abu Hasan & Ahmad Razi Othman & Ipung Fitri Purwanti, 2020. "Challenges and Opportunities of Biocoagulant/Bioflocculant Application for Drinking Water and Wastewater Treatment and Its Potential for Sludge Recovery," IJERPH, MDPI, vol. 17(24), pages 1-33, December.
    2. Sofia Chaudry & Arsalan Alavianghavanini & Pooya Darvehei & Navid R. Moheimani & Parisa A. Bahri, 2024. "Feasibility of Nutrient Removal and Recovery from Abattoir Wastewater Using Microalgae," Energies, MDPI, vol. 17(2), pages 1-16, January.
    3. Mohammed Ali Musa & Syazwani Idrus & Che Man Hasfalina & Nik Norsyahariati Nik Daud, 2018. "Effect of Organic Loading Rate on Anaerobic Digestion Performance of Mesophilic (UASB) Reactor Using Cattle Slaughterhouse Wastewater as Substrate," IJERPH, MDPI, vol. 15(10), pages 1-19, October.
    4. Béchir Wanassi & Ichrak Ben Hariz & Camélia Matei Ghimbeu & Cyril Vaulot & Mejdi Jeguirim, 2017. "Green Carbon Composite-Derived Polymer Resin and Waste Cotton Fibers for the Removal of Alizarin Red S Dye," Energies, MDPI, vol. 10(9), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adam Masłoń & Joanna Czarnota & Paulina Szczyrba & Aleksandra Szaja & Joanna Szulżyk-Cieplak & Grzegorz Łagód, 2024. "Assessment of Energy Self-Sufficiency of Wastewater Treatment Plants—A Case Study from Poland," Energies, MDPI, vol. 17(5), pages 1-19, March.
    2. Rosa M. Llácer-Iglesias & P. Amparo López-Jiménez & Modesto Pérez-Sánchez, 2021. "Energy Self-Sufficiency Aiming for Sustainable Wastewater Systems: Are All Options Being Explored?," Sustainability, MDPI, vol. 13(10), pages 1-20, May.
    3. Macintosh, C. & Astals, S. & Sembera, C. & Ertl, A. & Drewes, J.E. & Jensen, P.D. & Koch, K., 2019. "Successful strategies for increasing energy self-sufficiency at Grüneck wastewater treatment plant in Germany by food waste co-digestion and improved aeration," Applied Energy, Elsevier, vol. 242(C), pages 797-808.
    4. Michela Gallo & Desara Malluta & Adriana Del Borghi & Erica Gagliano, 2024. "A Critical Review on Methodologies for the Energy Benchmarking of Wastewater Treatment Plants," Sustainability, MDPI, vol. 16(5), pages 1-18, February.
    5. Yu, Lu & Yuan, Haiping & Zhu, Nanwen & Shen, Yanwen, 2021. "How does choline change methanogenesis pathway in anaerobic digestion of waste activated sludge?," Energy, Elsevier, vol. 224(C).
    6. Yin, Changkai & Shen, Yanwen & Zhu, Nanwen & Huang, Qiujie & Lou, Ziyang & Yuan, Haiping, 2018. "Anaerobic digestion of waste activated sludge with incineration bottom ash: Enhanced methane production and CO2 sequestration," Applied Energy, Elsevier, vol. 215(C), pages 503-511.
    7. Bey, M. & Hamidat, A. & Nacer, T., 2021. "Eco-energetic feasibility study of using grid-connected photovoltaic system in wastewater treatment plant," Energy, Elsevier, vol. 216(C).
    8. Huang, Runyao & Shen, Ziheng & Wang, Hongtao & Xu, Jin & Ai, Zisheng & Zheng, Hongyuan & Liu, Runxi, 2021. "Evaluating the energy efficiency of wastewater treatment plants in the Yangtze River Delta: Perspectives on regional discrepancies," Applied Energy, Elsevier, vol. 297(C).
    9. Philomina Mamley Adantey Arthur & Yacouba Konaté & Boukary Sawadogo & Gideon Sagoe & Bismark Dwumfour-Asare & Issahaku Ahmed & Richard Bayitse & Kofi Ampomah-Benefo, 2023. "Evaluating the Potential of Renewable Energy Sources in a Full-Scale Upflow Anaerobic Sludge Blanket Reactor Treating Municipal Wastewater in Ghana," Sustainability, MDPI, vol. 15(4), pages 1-17, February.
    10. Liu, Gangjin & Liu, Yi & Frankó, Balázs & Yang, Hongnan & Zheng, Dan & Deng, Liangwei & Liu, Jing, 2022. "Animal wastewater treatment with an improved combined Anaerobic-Aerobic System: Towards energy Self-Sufficiency," Applied Energy, Elsevier, vol. 323(C).
    11. Yin, Changkai & Shen, Yanwen & Dai, Xiaohu & Zhu, Nanwen & Yuan, Haiping & Lou, Ziyang & Yuan, Rongxue, 2020. "Integrated anaerobic digestion and CO2 sequestration for energy recovery from waste activated sludge by calcium addition: Timing matters," Energy, Elsevier, vol. 199(C).
    12. Longo, S. & Mauricio-Iglesias, M. & Soares, A. & Campo, P. & Fatone, F. & Eusebi, A.L. & Akkersdijk, E. & Stefani, L. & Hospido, A., 2019. "ENERWATER – A standard method for assessing and improving the energy efficiency of wastewater treatment plants," Applied Energy, Elsevier, vol. 242(C), pages 897-910.
    13. Smith, Kate & Liu, Shuming & Liu, Ying & Guo, Shengjie, 2018. "Can China reduce energy for water? A review of energy for urban water supply and wastewater treatment and suggestions for change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 41-58.
    14. Luo, Li & Dzakpasu, Mawuli & Yang, Baichuan & Zhang, Wushou & Yang, Yahong & Wang, Xiaochang C., 2019. "A novel index of total oxygen demand for the comprehensive evaluation of energy consumption for urban wastewater treatment," Applied Energy, Elsevier, vol. 236(C), pages 253-261.
    15. Xiong, Yu-Tong & Zhang, Jing & Chen, You-Peng & Guo, Jin-Song & Fang, Fang & Yan, Peng, 2021. "Geographic distribution of net-zero energy wastewater treatment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    16. Ana Belén Lozano Avilés & Francisco del Cerro Velázquez & Mercedes Llorens Pascual del Riquelme, 2019. "Methodology for Energy Optimization in Wastewater Treatment Plants. Phase I: Control of the Best Operating Conditions," Sustainability, MDPI, vol. 11(14), pages 1-27, July.
    17. Yan, Peng & Shi, Hong-Xin & Chen, You-Peng & Gao, Xu & Fang, Fang & Guo, Jin-Song, 2020. "Optimization of recovery and utilization pathway of chemical energy from wastewater pollutants by a net-zero energy wastewater treatment model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    18. Velasquez-Orta, Sharon B. & Heidrich, Oliver & Black, Ken & Graham, David, 2018. "Retrofitting options for wastewater networks to achieve climate change reduction targets," Applied Energy, Elsevier, vol. 218(C), pages 430-441.
    19. Karatayev, Marat & Clarke, Michèle L., 2016. "A review of current energy systems and green energy potential in Kazakhstan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 491-504.
    20. Mónica Vergara-Araya & Verena Hilgenfeldt & Di Peng & Heidrun Steinmetz & Jürgen Wiese, 2021. "Modelling to Lower Energy Consumption in a Large WWTP in China While Optimising Nitrogen Removal," Energies, MDPI, vol. 14(18), pages 1-24, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:5:p:731-:d:99271. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.