IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i4p437-d94119.html
   My bibliography  Save this article

Design Methodology of a Power Split Type Plug-In Hybrid Electric Vehicle Considering Drivetrain Losses

Author

Listed:
  • Hanho Son

    (School of Mechanical Engineering, Sungkyunkwan University, Suwon-si 16419, Korea)

  • Kyusik Park

    (School of Mechanical Engineering, Sungkyunkwan University, Suwon-si 16419, Korea)

  • Sungho Hwang

    (School of Mechanical Engineering, Sungkyunkwan University, Suwon-si 16419, Korea)

  • Hyunsoo Kim

    (School of Mechanical Engineering, Sungkyunkwan University, Suwon-si 16419, Korea)

Abstract

This paper proposes a design methodology for a power split type plug-in hybrid electric vehicle (PHEV) by considering drivetrain losses. Selecting the input split type PHEV with a single planetary gear as the reference topology, the locations of the engine, motor and generators (MGs), on the speed lever were determined by using the mechanical point considering the system efficiency. Based on the reference topology, feasible candidates were selected by considering the operation conditions of the engine, MG1, and a redundant element. To evaluate the fuel economy of the selected candidates, the loss models of the power electronic system and drivetrain components were obtained from the mathematical governing equation and the experimental results. Based on the component loss model, a comparative analysis was performed using a dynamic programming approach under the presence or absence of the drivetrain losses. It was found that the selection of the operating mode and the operation time of each mode vary since the drivetrain loss affects the system efficiency. In addition, even if the additional modes provide the flexibility of selecting the operating mode that results in a higher system efficiency for the given driving condition, additional drivetrain elements for realizing the modes can deteriorate the fuel economy due to their various losses.

Suggested Citation

  • Hanho Son & Kyusik Park & Sungho Hwang & Hyunsoo Kim, 2017. "Design Methodology of a Power Split Type Plug-In Hybrid Electric Vehicle Considering Drivetrain Losses," Energies, MDPI, vol. 10(4), pages 1-18, March.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:4:p:437-:d:94119
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/4/437/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/4/437/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Weichao Zhuang & Xiaowu Zhang & Huei Peng & Liangmo Wang, 2016. "Simultaneous Optimization of Topology and Component Sizes for Double Planetary Gear Hybrid Powertrains," Energies, MDPI, vol. 9(6), pages 1-17, May.
    2. Hanho Son & Hyunsoo Kim, 2016. "Development of Near Optimal Rule-Based Control for Plug-In Hybrid Electric Vehicles Taking into Account Drivetrain Component Losses," Energies, MDPI, vol. 9(6), pages 1-18, May.
    3. Mohammad Ali Karbaschian & Dirk Söffker, 2014. "Review and Comparison of Power Management Approaches for Hybrid Vehicles with Focus on Hydraulic Drives," Energies, MDPI, vol. 7(6), pages 1-25, May.
    4. Ximing Wang & Hongwen He & Fengchun Sun & Jieli Zhang, 2015. "Application Study on the Dynamic Programming Algorithm for Energy Management of Plug-in Hybrid Electric Vehicles," Energies, MDPI, vol. 8(4), pages 1-20, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hyunhwa Kim & Junbeom Wi & Jiho Yoo & Hanho Son & Chiman Park & Hyunsoo Kim, 2018. "A Study on the Fuel Economy Potential of Parallel and Power Split Type Hybrid Electric Vehicles," Energies, MDPI, vol. 11(8), pages 1-19, August.
    2. Xiaojun Liu & Dongye Sun & Datong Qin & Junlong Liu, 2017. "Achievement of Fuel Savings in Wheel Loader by Applying Hydrodynamic Mechanical Power Split Transmissions," Energies, MDPI, vol. 10(9), pages 1-20, August.
    3. Chiwoong Song & Dongsuk Kum & Kyung-Soo Kim, 2018. "Feasibility Analysis and Performance Evaluation of a Novel Power-Split Flywheel Hybrid Vehicle," Energies, MDPI, vol. 11(7), pages 1-25, July.
    4. Massimiliano Passalacqua & Damiano Lanzarotto & Matteo Repetto & Mario Marchesoni, 2017. "Advantages of Using Supercapacitors and Silicon Carbide on Hybrid Vehicle Series Architecture," Energies, MDPI, vol. 10(7), pages 1-14, July.
    5. Andrea Bonfiglio & Damiano Lanzarotto & Mario Marchesoni & Massimiliano Passalacqua & Renato Procopio & Matteo Repetto, 2017. "Electrical-Loss Analysis of Power-Split Hybrid Electric Vehicles," Energies, MDPI, vol. 10(12), pages 1-17, December.
    6. Jacek Pielecha & Kinga Skobiej & Przemyslaw Kubiak & Marek Wozniak & Krzysztof Siczek, 2022. "Exhaust Emissions from Plug-in and HEV Vehicles in Type-Approval Tests and Real Driving Cycles," Energies, MDPI, vol. 15(7), pages 1-38, March.
    7. Hanho Son & Hyunhwa Kim & Sungho Hwang & Hyunsoo Kim, 2018. "Development of an Advanced Rule-Based Control Strategy for a PHEV Using Machine Learning," Energies, MDPI, vol. 11(1), pages 1-15, January.
    8. Milan Perkušić & Damir Jelaska & Srdjan Podrug & Vjekoslav Tvrdić, 2017. "On the Feasibility of Independently Controllable Transmissions," Energies, MDPI, vol. 10(11), pages 1-13, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hyunhwa Kim & Junbeom Wi & Jiho Yoo & Hanho Son & Chiman Park & Hyunsoo Kim, 2018. "A Study on the Fuel Economy Potential of Parallel and Power Split Type Hybrid Electric Vehicles," Energies, MDPI, vol. 11(8), pages 1-19, August.
    2. Jing Lian & Shuang Liu & Linhui Li & Xuanzuo Liu & Yafu Zhou & Fan Yang & Lushan Yuan, 2017. "A Mixed Logical Dynamical-Model Predictive Control (MLD-MPC) Energy Management Control Strategy for Plug-in Hybrid Electric Vehicles (PHEVs)," Energies, MDPI, vol. 10(1), pages 1-18, January.
    3. Hanho Son & Hyunsoo Kim, 2016. "Development of Near Optimal Rule-Based Control for Plug-In Hybrid Electric Vehicles Taking into Account Drivetrain Component Losses," Energies, MDPI, vol. 9(6), pages 1-18, May.
    4. Guo, Hongqiang & Sun, Qun & Wang, Chong & Wang, Qinpu & Lu, Silong, 2018. "A systematic design and optimization method of transmission system and power management for a plug-in hybrid electric vehicle," Energy, Elsevier, vol. 148(C), pages 1006-1017.
    5. Du, Jiuyu & Chen, Jingfu & Song, Ziyou & Gao, Mingming & Ouyang, Minggao, 2017. "Design method of a power management strategy for variable battery capacities range-extended electric vehicles to improve energy efficiency and cost-effectiveness," Energy, Elsevier, vol. 121(C), pages 32-42.
    6. Zhang, Wei & Wang, Jixin & Liu, Yong & Gao, Guangzong & Liang, Siwen & Ma, Hongfeng, 2020. "Reinforcement learning-based intelligent energy management architecture for hybrid construction machinery," Applied Energy, Elsevier, vol. 275(C).
    7. Ximing Wang & Hongwen He & Fengchun Sun & Jieli Zhang, 2015. "Application Study on the Dynamic Programming Algorithm for Energy Management of Plug-in Hybrid Electric Vehicles," Energies, MDPI, vol. 8(4), pages 1-20, April.
    8. Bedatri Moulik & Dirk Söffker, 2015. "Optimal Rule-Based Power Management for Online, Real-Time Applications in HEVs with Multiple Sources and Objectives: A Review," Energies, MDPI, vol. 8(9), pages 1-15, August.
    9. Fengqi Zhang & Lihua Wang & Serdar Coskun & Hui Pang & Yahui Cui & Junqiang Xi, 2020. "Energy Management Strategies for Hybrid Electric Vehicles: Review, Classification, Comparison, and Outlook," Energies, MDPI, vol. 13(13), pages 1-35, June.
    10. Hsiu-Ying Hwang & Tian-Syung Lan & Jia-Shiun Chen, 2020. "Optimization and Application for Hydraulic Electric Hybrid Vehicle," Energies, MDPI, vol. 13(2), pages 1-17, January.
    11. Hassanzadeh, Mojtaba & Rahmani, Zahra, 2022. "A predictive controller for real-time energy management of plug-in hybrid electric vehicles," Energy, Elsevier, vol. 249(C).
    12. Yongpeng Shen & Zhendong He & Dongqi Liu & Binjie Xu, 2016. "Optimization of Fuel Consumption and Emissions for Auxiliary Power Unit Based on Multi-Objective Optimization Model," Energies, MDPI, vol. 9(2), pages 1-18, February.
    13. Yao, Yongming & Wang, Jie & Zhou, Zhicong & Li, Hang & Liu, Huiying & Li, Tianyu, 2023. "Grey Markov prediction-based hierarchical model predictive control energy management for fuel cell/battery hybrid unmanned aerial vehicles," Energy, Elsevier, vol. 262(PA).
    14. Vadym SAMORODOV & Anatoliy BONDARENKO & Igor TARAN & Iryna KLYMENKO, 2020. "Power Flows In A Hydrostatic-Mechanical Transmission Of A Mining Locomotive During The Braking Process," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 15(3), pages 17-28, September.
    15. L. Viktor Larsson & Liselott Ericson & Karl Uebel & Petter Krus, 2019. "Low-Level Control of Hybrid Hydromechanical Transmissions for Heavy Mobile Working Machines," Energies, MDPI, vol. 12(9), pages 1-20, May.
    16. Zou, Weitao & Li, Jianwei & Yang, Qingqing & Wan, Xinming & He, Yuntang & Lan, Hao, 2023. "A real-time energy management approach with fuel cell and battery competition-synergy control for the fuel cell vehicle," Applied Energy, Elsevier, vol. 334(C).
    17. Lihe Xi & Xin Zhang & Chuanyang Sun & Zexing Wang & Xiaosen Hou & Jibao Zhang, 2017. "Intelligent Energy Management Control for Extended Range Electric Vehicles Based on Dynamic Programming and Neural Network," Energies, MDPI, vol. 10(11), pages 1-18, November.
    18. Yoon Hyuk Shin & Seungkyu Sim & Sung Chul Kim, 2015. "Performance Characteristics of a Modularized and Integrated PTC Heating System for an Electric Vehicle," Energies, MDPI, vol. 9(1), pages 1-11, December.
    19. Lin, Xinyou & Wu, Jiayun & Wei, Yimin, 2021. "An ensemble learning velocity prediction-based energy management strategy for a plug-in hybrid electric vehicle considering driving pattern adaptive reference SOC," Energy, Elsevier, vol. 234(C).
    20. Wang, Hong & Huang, Yanjun & Khajepour, Amir & Song, Qiang, 2016. "Model predictive control-based energy management strategy for a series hybrid electric tracked vehicle," Applied Energy, Elsevier, vol. 182(C), pages 105-114.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:4:p:437-:d:94119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.