IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i11p1734-d116927.html
   My bibliography  Save this article

Supercritical Water Gasification of Biomass in a Ceramic Reactor: Long-Time Batch Experiments

Author

Listed:
  • Daniele Castello

    (Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, 38123 Trento, Italy
    Department of Energy Technology, Aalborg University, Pontoppidanstræde 111, 9220 Aalborg Øst, Denmark)

  • Birgit Rolli

    (Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany)

  • Andrea Kruse

    (Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
    Institute of Agricultural Engineering, Conversion Technology and LCA of Renewable Resources, University of Hohenheim, Gerbenstrasse 9, 70593 Stuttgart, Germany)

  • Luca Fiori

    (Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, 38123 Trento, Italy)

Abstract

Supercritical water gasification (SCWG) is an emerging technology for the valorization of (wet) biomass into a valuable fuel gas composed of hydrogen and/or methane. The harsh temperature and pressure conditions involved in SCWG ( T > 375 °C, p > 22 MPa) are definitely a challenge for the manufacturing of the reactors. Metal surfaces are indeed subject to corrosion under hydrothermal conditions, and expensive special alloys are needed to overcome such drawbacks. A ceramic reactor could be a potential solution to this issue. Finding a suitable material is, however, complex because the catalytic effect of the material can influence the gas yield and composition. In this work, a research reactor featuring an internal alumina inlay was utilized to conduct long-time (16 h) batch tests with real biomasses and model compounds. The same experiments were also conducted in batch reactors made of stainless steel and Inconel 625. The results show that the three devices have similar performance patterns in terms of gas production, although in the ceramic reactor higher yields of C 2+ hydrocarbons were obtained. The SEM observation of the reacted alumina surface revealed a good resistance of such material to supercritical conditions, even though some intergranular corrosion was observed.

Suggested Citation

  • Daniele Castello & Birgit Rolli & Andrea Kruse & Luca Fiori, 2017. "Supercritical Water Gasification of Biomass in a Ceramic Reactor: Long-Time Batch Experiments," Energies, MDPI, vol. 10(11), pages 1-17, October.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1734-:d:116927
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/11/1734/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/11/1734/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michela Lucian & Luca Fiori, 2017. "Hydrothermal Carbonization of Waste Biomass: Process Design, Modeling, Energy Efficiency and Cost Analysis," Energies, MDPI, vol. 10(2), pages 1-18, February.
    2. Tanksale, Akshat & Beltramini, Jorge Norberto & Lu, GaoQing Max, 2010. "A review of catalytic hydrogen production processes from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 166-182, January.
    3. Guo, Y. & Wang, S.Z. & Xu, D.H. & Gong, Y.M. & Ma, H.H. & Tang, X.Y., 2010. "Review of catalytic supercritical water gasification for hydrogen production from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 334-343, January.
    4. Onursal Yakaboylu & John Harinck & K. G. Smit & Wiebren De Jong, 2015. "Supercritical Water Gasification of Biomass: A Literature and Technology Overview," Energies, MDPI, vol. 8(2), pages 1-36, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Özdenkçi, Karhan & De Blasio, Cataldo & Sarwar, Golam & Melin, Kristian & Koskinen, Jukka & Alopaeus, Ville, 2019. "Techno-economic feasibility of supercritical water gasification of black liquor," Energy, Elsevier, vol. 189(C).
    2. Verma, Shivpal & Dregulo, Andrei Mikhailovich & Kumar, Vinay & Bhargava, Preeti Chaturvedi & Khan, Nawaz & Singh, Anuradha & Sun, Xinwei & Sindhu, Raveendran & Binod, Parameswaran & Zhang, Zengqiang &, 2023. "Reaction engineering during biomass gasification and conversion to energy," Energy, Elsevier, vol. 266(C).
    3. Florentina Maxim & Iuliana Poenaru & Elena Ecaterina Toma & Giuseppe Stefan Stoian & Florina Teodorescu & Cristian Hornoiu & Speranta Tanasescu, 2021. "Functional Materials for Waste-to-Energy Processes in Supercritical Water," Energies, MDPI, vol. 14(21), pages 1-23, November.
    4. Pérez, Alejandro & Ruiz, Begoña & Fuente, Enrique & Calvo, Luis Fernando & Paniagua, Sergio, 2021. "Pyrolysis technology for Cortaderia selloana invasive species. Prospects in the biomass energy sector," Renewable Energy, Elsevier, vol. 169(C), pages 178-190.
    5. Özdenkçi, Karhan & Prestipino, Mauro & Björklund-Sänkiaho, Margareta & Galvagno, Antonio & De Blasio, Cataldo, 2020. "Alternative energy valorization routes of black liquor by stepwise supercritical water gasification: Effect of process parameters on hydrogen yield and energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    6. Okolie, Jude A. & Nanda, Sonil & Dalai, Ajay K. & Berruti, Franco & Kozinski, Janusz A., 2020. "A review on subcritical and supercritical water gasification of biogenic, polymeric and petroleum wastes to hydrogen-rich synthesis gas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    7. M. N. Uddin & Kuaanan Techato & Juntakan Taweekun & Md Mofijur Rahman & M. G. Rasul & T. M. I. Mahlia & S. M. Ashrafur, 2018. "An Overview of Recent Developments in Biomass Pyrolysis Technologies," Energies, MDPI, vol. 11(11), pages 1-24, November.
    8. Lin Du & Yubo Wang & Wujing Wang & Xiangxiang Chen, 2018. "Studies on a Thermal Fault Simulation Device and the Pyrolysis Process of Insulating Oil," Energies, MDPI, vol. 11(12), pages 1-16, December.
    9. Sandro González-Arias & Abel Zúñiga-Moreno & Ricardo García-Morales & Octavio Elizalde-Solis & Francisco J. Verónico-Sánchez & Sergio O. Flores-Valle, 2021. "Gasification of Psidium guajava L. Waste Using Supercritical Water: Evaluation of Feed Ratio and Moderate Temperatures," Energies, MDPI, vol. 14(9), pages 1-17, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samiee-Zafarghandi, Roudabeh & Karimi-Sabet, Javad & Abdoli, Mohammad Ali & Karbassi, Abdolreza, 2018. "Supercritical water gasification of microalga Chlorella PTCC 6010 for hydrogen production: Box-Behnken optimization and evaluating catalytic effect of MnO2/SiO2 and NiO/SiO2," Renewable Energy, Elsevier, vol. 126(C), pages 189-201.
    2. Hu, Yulin & Gong, Mengyue & Xing, Xuelian & Wang, Haoyu & Zeng, Yimin & Xu, Chunbao Charles, 2020. "Supercritical water gasification of biomass model compounds: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    3. Wang, Cui & Zhu, Chao & Huang, Jianbing & Li, Linfeng & Jin, Hui, 2021. "Enhancement of depolymerization slag gasification in supercritical water and its gasification performance in fluidized bed reactor," Renewable Energy, Elsevier, vol. 168(C), pages 829-837.
    4. De Blasio, Cataldo & De Gisi, Sabino & Molino, Antonio & Simonetti, Marco & Santarelli, Massimo & Björklund-Sänkiaho, Margareta, 2019. "Concerning operational aspects in supercritical water gasification of kraft black liquor," Renewable Energy, Elsevier, vol. 130(C), pages 891-901.
    5. Özdenkçi, Karhan & De Blasio, Cataldo & Sarwar, Golam & Melin, Kristian & Koskinen, Jukka & Alopaeus, Ville, 2019. "Techno-economic feasibility of supercritical water gasification of black liquor," Energy, Elsevier, vol. 189(C).
    6. Pravakar Mohanty & Kamal K. Pant & Ritesh Mittal, 2015. "Hydrogen generation from biomass materials: challenges and opportunities," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(2), pages 139-155, March.
    7. Nurdiawati, Anissa & Zaini, Ilman Nuran & Irhamna, Adrian Rizqi & Sasongko, Dwiwahju & Aziz, Muhammad, 2019. "Novel configuration of supercritical water gasification and chemical looping for highly-efficient hydrogen production from microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 369-381.
    8. Shahbeik, Hossein & Peng, Wanxi & Kazemi Shariat Panahi, Hamed & Dehhaghi, Mona & Guillemin, Gilles J. & Fallahi, Alireza & Amiri, Hamid & Rehan, Mohammad & Raikwar, Deepak & Latine, Hannes & Pandalon, 2022. "Synthesis of liquid biofuels from biomass by hydrothermal gasification: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    9. Özdenkçi, Karhan & Prestipino, Mauro & Björklund-Sänkiaho, Margareta & Galvagno, Antonio & De Blasio, Cataldo, 2020. "Alternative energy valorization routes of black liquor by stepwise supercritical water gasification: Effect of process parameters on hydrogen yield and energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    10. Guo, Shaopeng & Liu, Qibin & Sun, Jie & Jin, Hongguang, 2018. "A review on the utilization of hybrid renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1121-1147.
    11. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    12. Ye, Lian & Zhang, Jianliang & Wang, Guangwei & Wang, Chen & Mao, Xiaoming & Ning, Xiaojun & Zhang, Nan & Teng, Haipeng & Li, Jinhua & Wang, Chuan, 2023. "Feasibility analysis of plastic and biomass hydrochar for blast furnace injection," Energy, Elsevier, vol. 263(PD).
    13. Mohamed Magdeldin & Thomas Kohl & Cataldo De Blasio & Mika Järvinen & Song Won Park & Reinaldo Giudici, 2016. "The BioSCWG Project: Understanding the Trade-Offs in the Process and Thermal Design of Hydrogen and Synthetic Natural Gas Production," Energies, MDPI, vol. 9(10), pages 1-27, October.
    14. Sooraj Kumar & Suhail Ahmed Soomro & Khanji Harijan & Mohammad Aslam Uqaili & Laveet Kumar, 2023. "Advancements of Biochar-Based Catalyst for Improved Production of Biodiesel: A Comprehensive Review," Energies, MDPI, vol. 16(2), pages 1-20, January.
    15. Pietro Romano & Nicola Stampone & Gabriele Di Giacomo, 2023. "Evolution and Prospects of Hydrothermal Carbonization," Energies, MDPI, vol. 16(7), pages 1-11, March.
    16. Pasquale Iannotta & Giuseppe Caputo & Francesca Scargiali & Sonia Longo & Maurizio Cellura & Alberto Brucato, 2020. "Combined Gasification-Oxidation System for Waste Treatment with Supercritical Water: LCA and Performance Analysis," Sustainability, MDPI, vol. 13(1), pages 1-14, December.
    17. Chen, Lichun & Wen, Chang & Wang, Wenyu & Liu, Tianyu & Liu, Enze & Liu, Haowen & Li, Zexin, 2020. "Combustion behaviour of biochars thermally pretreated via torrefaction, slow pyrolysis, or hydrothermal carbonisation and co-fired with pulverised coal," Renewable Energy, Elsevier, vol. 161(C), pages 867-877.
    18. Nestor Sanchez & Ruth Yolanda Ruiz & Nicolas Infante & Martha Cobo, 2017. "Bioethanol Production from Cachaza as Hydrogen Feedstock: Effect of Ammonium Sulfate during Fermentation," Energies, MDPI, vol. 10(12), pages 1-16, December.
    19. Daniel Reißmann & Daniela Thrän & Alberto Bezama, 2018. "Key Development Factors of Hydrothermal Processes in Germany by 2030: A Fuzzy Logic Analysis," Energies, MDPI, vol. 11(12), pages 1-20, December.
    20. Burra, K.G. & Hussein, M.S. & Amano, R.S. & Gupta, A.K., 2016. "Syngas evolutionary behavior during chicken manure pyrolysis and air gasification," Applied Energy, Elsevier, vol. 181(C), pages 408-415.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1734-:d:116927. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.