IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i10p1493-d113469.html
   My bibliography  Save this article

Coordinated Control Strategies for a Permanent Magnet Synchronous Generator Based Wind Energy Conversion System

Author

Listed:
  • Ramji Tiwari

    (School of Electrical Engineering, VIT University, Vellore 632014, India)

  • Sanjeevikumar Padmanaban

    (Department of Electrical and Electronics Engineering, University of Johannesburg, Auckland Park 2006, South Africa)

  • Ramesh Babu Neelakandan

    (School of Electrical Engineering, VIT University, Vellore 632014, India)

Abstract

In this paper, a novel co-ordinated hybrid maximum power point tracking (MPPT)-pitch angle based on a radial basis function network (RBFN) is proposed for a variable speed variable pitch wind turbine. The proposed controller is used to maximise output power when the wind speed is low and optimise the power when the wind speed is high. The proposed controller provides robustness to the nonlinear characteristic of wind speed. It uses wind speed, generator speed, and generator power as input variables and utilises the duty cycle and the reference pitch angle as the output control variables. The duty cycle is used to control the converter so as to maximise the power output and the reference pitch angle is used to control the generator speed in order to control the generator output power in the above rated wind speed region. The effectiveness of the proposed controller was verified using MATLAB/Simulink software.

Suggested Citation

  • Ramji Tiwari & Sanjeevikumar Padmanaban & Ramesh Babu Neelakandan, 2017. "Coordinated Control Strategies for a Permanent Magnet Synchronous Generator Based Wind Energy Conversion System," Energies, MDPI, vol. 10(10), pages 1-17, September.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1493-:d:113469
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/10/1493/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/10/1493/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bharatiraja Chokkalingam & Sanjeevikumar Padmanaban & Pierluigi Siano & Ramesh Krishnamoorthy & Raghu Selvaraj, 2017. "Real-Time Forecasting of EV Charging Station Scheduling for Smart Energy Systems," Energies, MDPI, vol. 10(3), pages 1-16, March.
    2. Assareh, Ehsanolah & Biglari, Mojtaba, 2015. "A novel approach to capture the maximum power from variable speed wind turbines using PI controller, RBF neural network and GSA evolutionary algorithm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1023-1037.
    3. Kumar, Dipesh & Chatterjee, Kalyan, 2016. "A review of conventional and advanced MPPT algorithms for wind energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 957-970.
    4. Kalaivani Chandramohan & Sanjeevikumar Padmanaban & Rajambal Kalyanasundaram & Mahajan Sagar Bhaskar & Lucian Mihet-Popa, 2017. "Grid Synchronization of a Seven-Phase Wind Electric Generator Using d-q PLL," Energies, MDPI, vol. 10(7), pages 1-20, July.
    5. Fuad Un-Noor & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Mohammad Nurunnabi Mollah & Eklas Hossain, 2017. "A Comprehensive Study of Key Electric Vehicle (EV) Components, Technologies, Challenges, Impacts, and Future Direction of Development," Energies, MDPI, vol. 10(8), pages 1-84, August.
    6. Ahmed Ali & Sanjeevikumar Padmanaban & Bhekisipho Twala & Tshilidzi Marwala, 2017. "Electric Power Grids Distribution Generation System for Optimal Location and Sizing—A Case Study Investigation by Various Optimization Algorithms," Energies, MDPI, vol. 10(7), pages 1-13, July.
    7. Shin Young Heo & Mun Kyeom Kim & Jin Woo Choi, 2015. "Hybrid Intelligent Control Method to Improve the Frequency Support Capability of Wind Energy Conversion Systems," Energies, MDPI, vol. 8(10), pages 1-22, October.
    8. Emre Ozsoy & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Viliam Fedák & Fiaz Ahmad & Rasool Akhtar & Asif Sabanovic, 2017. "Control Strategy for a Grid-Connected Inverter under Unbalanced Network Conditions—A Disturbance Observer-Based Decoupled Current Approach," Energies, MDPI, vol. 10(7), pages 1-17, July.
    9. Moradi, Hamed & Vossoughi, Gholamreza, 2015. "Robust control of the variable speed wind turbines in the presence of uncertainties: A comparison between H∞ and PID controllers," Energy, Elsevier, vol. 90(P2), pages 1508-1521.
    10. Tiwari, Ramji & Babu, N. Ramesh, 2016. "Recent developments of control strategies for wind energy conversion system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 268-285.
    11. del Río, Pablo & Calvo Silvosa, Anxo & Iglesias Gómez, Guillermo, 2011. "Policies and design elements for the repowering of wind farms: A qualitative analysis of different options," Energy Policy, Elsevier, vol. 39(4), pages 1897-1908, April.
    12. Tripathi, S.M. & Tiwari, A.N. & Singh, Deependra, 2015. "Grid-integrated permanent magnet synchronous generator based wind energy conversion systems: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1288-1305.
    13. Yolanda Vidal & Leonardo Acho & Ignasi Cifre & Àlex Garcia & Francesc Pozo & José Rodellar, 2017. "Wind Turbine Synchronous Reset Pitch Control," Energies, MDPI, vol. 10(6), pages 1-16, June.
    14. Eklas Hossain & Ron Perez & Sanjeevikumar Padmanaban & Pierluigi Siano, 2017. "Investigation on the Development of a Sliding Mode Controller for Constant Power Loads in Microgrids," Energies, MDPI, vol. 10(8), pages 1-24, July.
    15. Duong, Minh Quan & Grimaccia, Francesco & Leva, Sonia & Mussetta, Marco & Ogliari, Emanuele, 2014. "Pitch angle control using hybrid controller for all operating regions of SCIG wind turbine system," Renewable Energy, Elsevier, vol. 70(C), pages 197-203.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tania García-Sánchez & Arbinda Kumar Mishra & Elías Hurtado-Pérez & Rubén Puché-Panadero & Ana Fernández-Guillamón, 2020. "A Controller for Optimum Electrical Power Extraction from a Small Grid-Interconnected Wind Turbine," Energies, MDPI, vol. 13(21), pages 1-16, November.
    2. Gopinath Subramani & Vigna K. Ramachandaramurthy & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Frede Blaabjerg & Josep M. Guerrero, 2017. "Grid-Tied Photovoltaic and Battery Storage Systems with Malaysian Electricity Tariff—A Review on Maximum Demand Shaving," Energies, MDPI, vol. 10(11), pages 1-17, November.
    3. Sergio Saponara & Lucian Mihet-Popa, 2019. "Energy Storage Systems and Power Conversion Electronics for E-Transportation and Smart Grid," Energies, MDPI, vol. 12(4), pages 1-9, February.
    4. K. Padmanathan & N. Kamalakannan & P. Sanjeevikumar & F. Blaabjerg & J. B. Holm-Nielsen & G. Uma & R. Arul & R. Rajesh & A. Srinivasan & J. Baskaran, 2019. "Conceptual Framework of Antecedents to Trends on Permanent Magnet Synchronous Generators for Wind Energy Conversion Systems," Energies, MDPI, vol. 12(13), pages 1-39, July.
    5. Htar Su Hlaing & Jia Liu & Hassan Bevrani & Toshifumi Ise, 2020. "PMSG Control for a Stand-Alone Gas Engine Generator Using Active Rectifier and VSG-Controlled Inverter," Energies, MDPI, vol. 13(1), pages 1-16, January.
    6. Anto Anbarasu Yesudhas & Young Hoon Joo & Seong Ryong Lee, 2022. "Reference Model Adaptive Control Scheme on PMVG-Based WECS for MPPT under a Real Wind Speed," Energies, MDPI, vol. 15(9), pages 1-17, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammed Kh. AL-Nussairi & Ramazan Bayindir & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Pierluigi Siano, 2017. "Constant Power Loads (CPL) with Microgrids: Problem Definition, Stability Analysis and Compensation Techniques," Energies, MDPI, vol. 10(10), pages 1-20, October.
    2. Tiwari, Ramji & Babu, N. Ramesh, 2016. "Recent developments of control strategies for wind energy conversion system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 268-285.
    3. Kang Miao Tan & Vigna K. Ramachandaramurthy & Jia Ying Yong & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Frede Blaabjerg, 2017. "Minimization of Load Variance in Power Grids—Investigation on Optimal Vehicle-to-Grid Scheduling," Energies, MDPI, vol. 10(11), pages 1-21, November.
    4. Shrabani Sahu & Sasmita Behera, 2022. "A review on modern control applications in wind energy conversion system," Energy & Environment, , vol. 33(2), pages 223-262, March.
    5. Zhicheng Lin & Song Zheng & Zhicheng Chen & Rong Zheng & Wang Zhang, 2019. "Application Research of the Parallel System Theory and the Data Engine Approach in Wind Energy Conversion System," Energies, MDPI, vol. 12(5), pages 1-20, March.
    6. Sergio Saponara & Lucian Mihet-Popa, 2019. "Energy Storage Systems and Power Conversion Electronics for E-Transportation and Smart Grid," Energies, MDPI, vol. 12(4), pages 1-9, February.
    7. Youssef, Abdel-Raheem & Mousa, Hossam H.H. & Mohamed, Essam E.M., 2020. "Development of self-adaptive P&O MPPT algorithm for wind generation systems with concentrated search area," Renewable Energy, Elsevier, vol. 154(C), pages 875-893.
    8. Amira Elkodama & Amr Ismaiel & A. Abdellatif & S. Shaaban & Shigeo Yoshida & Mostafa A. Rushdi, 2023. "Control Methods for Horizontal Axis Wind Turbines (HAWT): State-of-the-Art Review," Energies, MDPI, vol. 16(17), pages 1-32, September.
    9. Vasudevan, Krishnakumar R. & Ramachandaramurthy, Vigna K. & Venugopal, Gomathi & Ekanayake, J.B. & Tiong, S.K., 2021. "Variable speed pumped hydro storage: A review of converters, controls and energy management strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    10. Umashankar Subramaniam & Swaminathan Ganesan & Mahajan Sagar Bhaskar & Sanjeevikumar Padmanaban & Frede Blaabjerg & Dhafer J. Almakhles, 2019. "Investigations of AC Microgrid Energy Management Systems Using Distributed Energy Resources and Plug-in Electric Vehicles," Energies, MDPI, vol. 12(14), pages 1-14, July.
    11. Gopinath Subramani & Vigna K. Ramachandaramurthy & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Frede Blaabjerg & Josep M. Guerrero, 2017. "Grid-Tied Photovoltaic and Battery Storage Systems with Malaysian Electricity Tariff—A Review on Maximum Demand Shaving," Energies, MDPI, vol. 10(11), pages 1-17, November.
    12. Younes Azelhak & Loubna Benaaouinate & Hicham Medromi & Youssef Errami & Tarik Bouragba & Damien Voyer, 2021. "Exhaustive Comparison between Linear and Nonlinear Approaches for Grid-Side Control of Wind Energy Conversion Systems," Energies, MDPI, vol. 14(13), pages 1-20, July.
    13. Golnary, Farshad & Moradi, Hamed, 2018. "Design and comparison of quasi continuous sliding mode control with feedback linearization for a large scale wind turbine with wind speed estimation," Renewable Energy, Elsevier, vol. 127(C), pages 495-508.
    14. López-Queija, Javier & Robles, Eider & Jugo, Josu & Alonso-Quesada, Santiago, 2022. "Review of control technologies for floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    15. Meryem Benakcha & Leila Benalia & Abdelkrim Ammar & Amor Bourek, 2019. "Wind energy conversion system based on dual stator induction generator controlled by nonlinear backstepping and pi controllers," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(4), pages 499-509, August.
    16. Abolvafaei, Mahnaz & Ganjefar, Soheil, 2019. "Maximum power extraction from a wind turbine using second-order fast terminal sliding mode control," Renewable Energy, Elsevier, vol. 139(C), pages 1437-1446.
    17. M. A. Hannan & Ali Q. Al-Shetwi & M. S. Mollik & Pin Jern Ker & M. Mannan & M. Mansor & Hussein M. K. Al-Masri & T. M. Indra Mahlia, 2023. "Wind Energy Conversions, Controls, and Applications: A Review for Sustainable Technologies and Directions," Sustainability, MDPI, vol. 15(5), pages 1-30, February.
    18. Eklas Hossain & Ron Perez & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Frede Blaabjerg & Vigna K. Ramachandaramurthy, 2017. "Sliding Mode Controller and Lyapunov Redesign Controller to Improve Microgrid Stability: A Comparative Analysis with CPL Power Variation," Energies, MDPI, vol. 10(12), pages 1-24, November.
    19. Abrar Ahmed Chhipa & Vinod Kumar & Raghuveer Raj Joshi & Prasun Chakrabarti & Michal Jasinski & Alessandro Burgio & Zbigniew Leonowicz & Elzbieta Jasinska & Rajkumar Soni & Tulika Chakrabarti, 2021. "Adaptive Neuro-Fuzzy Inference System-Based Maximum Power Tracking Controller for Variable Speed WECS," Energies, MDPI, vol. 14(19), pages 1-19, October.
    20. Fathabadi, Hassan, 2016. "Maximum mechanical power extraction from wind turbines using novel proposed high accuracy single-sensor-based maximum power point tracking technique," Energy, Elsevier, vol. 113(C), pages 1219-1230.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1493-:d:113469. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.