IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v8y2018i11p170-d178334.html
   My bibliography  Save this article

Turnover of Minerals and Organics in the Postharvest Herbage of Annuals and Perennials: Winter Wheat and Goldenrod

Author

Listed:
  • Gerhard Gramss

    (Institute of Earth Sciences, Friedrich-Schiller-University, Burgweg 11, D-07749 Jena, Germany)

  • Klaus-Dieter Voigt

    (Food GmbH Jena, Orlaweg 2, D-07743 Jena, Germany)

Abstract

Crossing annual cereals, legumes, and oilseeds with wild rhizomatous relatives is used to create perennial lines that fruit over 2–3 seasons. Contrary to annual crops, the year-round vegetation cover should contribute to carbon sequestration, soil formation, and root mineral preservation. Soil erosion, nutrient leaching, and labor expenses may be reduced. While deep-rooted grasses actually inhibit nitrate leaching, advantages in nutrient storage and soil formation are not yet shown. Therefore, the turnover of organics and minerals in the perennial goldenrod was compared with that of winter wheat between blooming and resprouting (28 February) by gravimetry and ICP-MS. From blooming (23 August) to harvest (13 November), goldenrod stalks of 10,070 (given in kg ha −1 ) lost 23% by dry weight (DW) and released 14.9/9.6/65.7 in NPK and 2193 in water-soluble organics via leaching and root exudation. Apart from a transient rise of 28.8 in N around 13 November, the stubble/rhizome system held CaKMg(N)P stable at a level avoiding metal stress from 23 August to 28 February. Filling seeds in wheat excluded net losses of minerals and organics from anthesis to harvest (23 July). Stubbles (16 cm) and spilt grains of 2890 represented 41.8/2.91/62.5 in NPK and lost 905 in biomass with 25.4/1.8/59.8 in NPK to the soil by 28 February. In wheat-maize rotations, ploughing was avoided until early March. Weeds and seedlings emerged from spilt grains replaced losses in stubble biomass, N, and P but left 40.5 in K unused to the soil. In wheat-wheat rotations, organics and minerals lost by the down-ploughed biomass were replenished by the next-rotation seedlings that left only 18.3 in K to the soil. In summary, off-season goldenrod rhizomes did not store excess minerals. The rate of mineral preservation corresponded with the quantity of the biomass irrespective of its perennial habit. Released water-soluble organics should foster microbial carbon formation and CO 2 efflux while soil improving gains in humate C should depend on the lignin content of the decaying annual or perennial biomass. Clues for NPK savings by perennials were not found.

Suggested Citation

  • Gerhard Gramss & Klaus-Dieter Voigt, 2018. "Turnover of Minerals and Organics in the Postharvest Herbage of Annuals and Perennials: Winter Wheat and Goldenrod," Agriculture, MDPI, vol. 8(11), pages 1-17, October.
  • Handle: RePEc:gam:jagris:v:8:y:2018:i:11:p:170-:d:178334
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/8/11/170/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/8/11/170/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gerhard Gramss & Klaus-Dieter Voigt, 2016. "Gradual Accumulation of Heavy Metals in an Industrial Wheat Crop from Uranium Mine Soil and the Potential Use of the Herbage," Agriculture, MDPI, vol. 6(4), pages 1-23, October.
    2. John M. Wallace & Alwyn Williams & Jeffrey A. Liebert & Victoria J. Ackroyd & Rachel A. Vann & William S. Curran & Clair L. Keene & Mark J. VanGessel & Matthew R. Ryan & Steven B. Mirsky, 2017. "Cover Crop-Based, Organic Rotational No-Till Corn and Soybean Production Systems in the Mid-Atlantic United States," Agriculture, MDPI, vol. 7(4), pages 1-21, April.
    3. Bell, Lindsay W. & Byrne (nee Flugge), Felicity & Ewing, Mike A. & Wade, Len J., 2008. "A preliminary whole-farm economic analysis of perennial wheat in an Australian dryland farming system," Agricultural Systems, Elsevier, vol. 96(1-3), pages 166-174, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel P. Roberts & Autar K. Mattoo, 2018. "Sustainable Agriculture—Enhancing Environmental Benefits, Food Nutritional Quality and Building Crop Resilience to Abiotic and Biotic Stresses," Agriculture, MDPI, vol. 8(1), pages 1-24, January.
    2. Anna Kocira & Mariola Staniak & Marzena Tomaszewska & Rafał Kornas & Jacek Cymerman & Katarzyna Panasiewicz & Halina Lipińska, 2020. "Legume Cover Crops as One of the Elements of Strategic Weed Management and Soil Quality Improvement. A Review," Agriculture, MDPI, vol. 10(9), pages 1-41, September.
    3. Shilai Zhang & Guangfu Huang & Yujiao Zhang & Xiutao Lv & Kejiang Wan & Jian Liang & Yupeng Feng & Jinrong Dao & Shukang Wu & Lin Zhang & Xu Yang & Xiaoping Lian & Liyu Huang & Lin Shao & Jing Zhang &, 2023. "Sustained productivity and agronomic potential of perennial rice," Nature Sustainability, Nature, vol. 6(1), pages 28-38, January.
    4. Kirsten Ann Pearsons & Emmanuel Chiwo Omondi & Brad J. Heins & Gladis Zinati & Andrew Smith & Yichao Rui, 2022. "Reducing Tillage Affects Long-Term Yields but Not Grain Quality of Maize, Soybeans, Oats, and Wheat Produced in Three Contrasting Farming Systems," Sustainability, MDPI, vol. 14(2), pages 1-20, January.
    5. Waldman, Kurt B. & Ortega, David L. & Richardson, Robert B. & Snapp, Sieglinde S., 2017. "Estimating demand for perennial pigeon pea in Malawi using choice experiments," Ecological Economics, Elsevier, vol. 131(C), pages 222-230.
    6. Heather M. Beach & Ken W. Laing & Morris Van De Walle & Ralph C. Martin, 2018. "The Current State and Future Directions of Organic No-Till Farming with Cover Crops in Canada, with Case Study Support," Sustainability, MDPI, vol. 10(2), pages 1-15, January.
    7. Tejendra Chapagain & Elizabeth A. Lee & Manish N. Raizada, 2020. "The Potential of Multi-Species Mixtures to Diversify Cover Crop Benefits," Sustainability, MDPI, vol. 12(5), pages 1-16, March.
    8. Douglas John Cattani & Sean Robert Asselin, 2022. "Early Plant Development in Intermediate Wheatgrass," Agriculture, MDPI, vol. 12(7), pages 1-14, June.
    9. Saloni Sachdeva & Mike A. Powell & Girish Nandini & Hemant Kumar & Rakesh Kumar & Prafulla Kumar Sahoo, 2023. "Uranium and Fluoride Accumulation in Vegetable and Cereal Crops: A Review on Current Status and Crop-Wise Differences," Sustainability, MDPI, vol. 15(18), pages 1-22, September.
    10. Gourav Sharma & Swati Shrestha & Sudip Kunwar & Te-Ming Tseng, 2021. "Crop Diversification for Improved Weed Management: A Review," Agriculture, MDPI, vol. 11(5), pages 1-17, May.
    11. Nilsson, Pia & Bommarco, Riccardo & Hansson, Helena & Kuns, Brian & Schaak, Henning, 2022. "Farm performance and input self-sufficiency increases with functional crop diversity on Swedish farms," Ecological Economics, Elsevier, vol. 198(C).
    12. Eugene P. Law & Sandra Wayman & Christopher J. Pelzer & Steven W. Culman & Miguel I. Gómez & Antonio DiTommaso & Matthew R. Ryan, 2022. "Multi-Criteria Assessment of the Economic and Environmental Sustainability Characteristics of Intermediate Wheatgrass Grown as a Dual-Purpose Grain and Forage Crop," Sustainability, MDPI, vol. 14(6), pages 1-24, March.
    13. Sandra Wayman & Valentine Debray & Stephen Parry & Christophe David & Matthew R. Ryan, 2019. "Perspectives on Perennial Grain Crop Production among Organic and Conventional Farmers in France and the United States," Agriculture, MDPI, vol. 9(11), pages 1-17, November.
    14. Waldman, Kurt B. & Richardson, Robert B., 2018. "Confronting Tradeoffs Between Agricultural Ecosystem Services and Adaptation to Climate Change in Mali," Ecological Economics, Elsevier, vol. 150(C), pages 184-193.
    15. Patrick M. Carr, 2017. "Guest Editorial: Conservation Tillage for Organic Farming," Agriculture, MDPI, vol. 7(3), pages 1-6, March.
    16. Chen, Chao & Fletcher, Andrew & Ota, Noboru & Oliver, Yvette & Lawes, Roger, 2023. "Integrating long fallow into wheat-based cropping systems in Western Australia: Spatial pattern of yield and economic responses," Agricultural Systems, Elsevier, vol. 204(C).
    17. Thomas J. Molnar & Peter C. Kahn & Timothy M. Ford & Clarence J. Funk & C. Reed Funk, 2013. "Tree Crops, a Permanent Agriculture: Concepts from the Past for a Sustainable Future," Resources, MDPI, vol. 2(4), pages 1-32, September.
    18. Garnett, Tara, 2011. "Where are the best opportunities for reducing greenhouse gas emissions in the food system (including the food chain)?," Food Policy, Elsevier, vol. 36(S1), pages 23-32.
    19. Reeling, Carson J. & Weir, A.E. & Swinton, Scott M. & Hayes, R.C., 2012. "A comparative breakeven net return threshold to guide development of conservation technologies with application to perennial wheat," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124723, Agricultural and Applied Economics Association.
    20. Thomas, Dean T. & Flohr, Bonnie M. & Monjardino, Marta & Loi, Angelo & Llewellyn, Rick S. & Lawes, Roger A. & Norman, Hayley C., 2021. "Selecting higher nutritive value annual pasture legumes increases the profitability of sheep production," Agricultural Systems, Elsevier, vol. 194(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:8:y:2018:i:11:p:170-:d:178334. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.