IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i3p491-d1358901.html
   My bibliography  Save this article

Yield Gap Analysis of Super High-Yielding Rice (>15 t ha −1 ) in Two Ecological Regions

Author

Listed:
  • Zhongwei Wei

    (College of Agronomy, Hunan Agricultural University, Changsha 410128, China
    State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China)

  • Yuzhu Zhang

    (College of Agronomy, Hunan Agricultural University, Changsha 410128, China
    State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China)

  • Wenyu Jin

    (College of Agronomy, Hunan Agricultural University, Changsha 410128, China
    State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China)

Abstract

Super high-yielding rice (SHYR) (>15 t ha −1 ) plays a crucial role in global food production and security. We hypothesized that the external environment of different ecological regions could improve biomass accumulation in different periods and thus increase the rice yield. Two SHYR varieties, i.e., Xiangliangyou900 (XLY900) and Yliangyou900 (YLY900), were cultivated in the YONGSHENG and LONGHUI ecoregions, China. The results indicated that the average yield of the two SHYRs in the LONGHUI ecological region was 15.27–15.45 t ha −1 and 18.81–20.10 t ha −1 in YONGSHENG. The high grain yield in the YONGSHENG ecoregion was mainly due to the increased number of spikelets per panicle, crop growth rate, and total biomass during the transplanting–heading stage (TP-HS) and heading–maturity stage (HS-MS), and harvest index. The yield of SHYR was significantly correlated with external environment conditions, i.e., average minimum temperature, average daytime, and night-time temperature, and average daily temperature at the TP-HS, HS-MS, and transplanting–maturity (TP-MS) stages. The rice yield was significantly and positively correlated with the cumulative daily radiation. Therefore, it can be concluded that the final yield of super high-yield rice is closely related to the utilization of temperature and radiation resources during the growth process in the ecological environment.

Suggested Citation

  • Zhongwei Wei & Yuzhu Zhang & Wenyu Jin, 2024. "Yield Gap Analysis of Super High-Yielding Rice (>15 t ha −1 ) in Two Ecological Regions," Agriculture, MDPI, vol. 14(3), pages 1-12, March.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:3:p:491-:d:1358901
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/3/491/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/3/491/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Min Huang, 2022. "The decreasing area of hybrid rice production in China: causes and potential effects on Chinese rice self-sufficiency," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(1), pages 267-272, February.
    2. Weifeng Zhang & Guoxin Cao & Xiaolin Li & Hongyan Zhang & Chong Wang & Quanqing Liu & Xinping Chen & Zhenling Cui & Jianbo Shen & Rongfeng Jiang & Guohua Mi & Yuxin Miao & Fusuo Zhang & Zhengxia Dou, 2016. "Closing yield gaps in China by empowering smallholder farmers," Nature, Nature, vol. 537(7622), pages 671-674, September.
    3. Nanyan Deng & Patricio Grassini & Haishun Yang & Jianliang Huang & Kenneth G. Cassman & Shaobing Peng, 2019. "Closing yield gaps for rice self-sufficiency in China," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bo Sun & Yongming Luo & Dianlin Yang & Jingsong Yang & Yuguo Zhao & Jiabao Zhang, 2023. "Coordinative Management of Soil Resources and Agricultural Farmland Environment for Food Security and Sustainable Development in China," IJERPH, MDPI, vol. 20(4), pages 1-16, February.
    2. Zhiqi Sun & Ruifa Hu & Yu Hong, 2022. "Does yield gap still matter? Evidence from rice production in China," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(3), pages 829-840, June.
    3. Zhongen Niu & Huimin Yan & Fang Liu, 2020. "Decreasing Cropping Intensity Dominated the Negative Trend of Cropland Productivity in Southern China in 2000–2015," Sustainability, MDPI, vol. 12(23), pages 1-14, December.
    4. Luoman Pu & Junnan Jiang & Menglu Ma & Duan Huang, 2024. "Gaps between Rice Actual and Potential Yields Based on the VPM and GAEZ Models in Heilongjiang Province, China," Agriculture, MDPI, vol. 14(2), pages 1-22, February.
    5. Yuewen Huo & Songlin Ye & Zhou Wu & Fusuo Zhang & Guohua Mi, 2022. "Barriers to the Development of Agricultural Mechanization in the North and Northeast China Plains: A Farmer Survey," Agriculture, MDPI, vol. 12(2), pages 1-14, February.
    6. Lu, Yingjie & Li, Tao & Hu, Hui & Zeng, Xuemei, 2023. "Short-term prediction of reference crop evapotranspiration based on machine learning with different decomposition methods in arid areas of China," Agricultural Water Management, Elsevier, vol. 279(C).
    7. Zhang, Bangbang & Li, Xian & Chen, Haibin & Niu, Wenhao & Kong, Xiangbin & Yu, Qiang & Zhao, Minjuan & Xia, Xianli, 2022. "Identifying opportunities to close yield gaps in China by use of certificated cultivars to estimate potential productivity," Land Use Policy, Elsevier, vol. 117(C).
    8. Hampf, Anna C. & Carauta, Marcelo & Latynskiy, Evgeny & Libera, Affonso A.D. & Monteiro, Leonardo & Sentelhas, Paulo & Troost, Christian & Berger, Thomas & Nendel, Claas, 2018. "The biophysical and socio-economic dimension of yield gaps in the southern Amazon – A bio-economic modelling approach," Agricultural Systems, Elsevier, vol. 165(C), pages 1-13.
    9. Edgar Vladimir Gutiérrez Castorena & Gustavo Andrés Ramírez Gómez & Carlos Alberto Ortíz Solorio, 2023. "The Agricultural Potential of a Region with Semi-Dry, Warm and Temperate Subhumid Climate Diversity through Agroecological Zoning," Sustainability, MDPI, vol. 15(12), pages 1-18, June.
    10. Xiukang Wang, 2022. "Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security," Land, MDPI, vol. 11(4), pages 1-21, March.
    11. Zhuang, Minghao & Liu, Yize & Yang, Yi & Zhang, Qingsong & Ying, Hao & Yin, Yulong & Cui, Zhenling, 2022. "The sustainability of staple crops in China can be substantially improved through localized strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    12. Yongqiang Zhang & Hao Sun & Maosheng Ge & Hang Zhao & Yifan Hu & Changyue Cui & Zhibin Wu, 2023. "Difference in Energy Input and Output in Agricultural Production under Surface Irrigation and Water-Saving Irrigation: A Case Study of Kiwi Fruit in Shaanxi," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
    13. Jianxing Chen & Xuesong Gao & Yanyan Zhang & Petri Penttinen & Qi Wang & Jing Ling & Ting Lan & Dinghua Ou & Yang Li, 2023. "Analysis on Coupling Coordination Degree for Cropland and Livestock from 2000 to 2020 in China," Agriculture, MDPI, vol. 13(7), pages 1-20, June.
    14. Guo, Xiao-Xia & Li, Ke-Li & Liu, Yi-Ze & Zhuang, Ming-Hao & Wang, Chong, 2022. "Toward the economic-environmental sustainability of smallholder farming systems through judicious management strategies and optimized planting structures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    15. Wang, Huaiyu & Bin, Bing & Pede, Valerien O., 2023. "Adoption of ratoon rice and its impact on technical efficiency of rice farming in China," 2023 Annual Meeting, July 23-25, Washington D.C. 335541, Agricultural and Applied Economics Association.
    16. Wei, Zhibiao & Zhuang, Minghao & Hellegers, Petra & Cui, Zhenling & Hoffland, Ellis, 2023. "Towards circular nitrogen use in the agri-food system at village and county level in China," Agricultural Systems, Elsevier, vol. 209(C).
    17. Yuxuan Duan & Hongliang Zheng & Haoran Wen & Di Qu & Jingnan Cui & Chong Li & Jingguo Wang & Hualong Liu & Luomiao Yang & Yan Jia & Wei Xin & Shuangshuang Li & Detang Zou, 2022. "Identification of Candidate Genes for Salt Tolerance at the Germination Stage in Japonica Rice by Genome-Wide Association Analysis," Agriculture, MDPI, vol. 12(10), pages 1-15, October.
    18. Guohui Li & Xin Chen & Chiyan Zhou & Zijun Yang & Chenhui Zhang & Zepeng Huang & Wen Pan & Ke Xu, 2022. "Vascular Bundle Characteristics of Different Rice Variety Treated with Nitrogen Fertilizers and Its Relation to Stem Assimilates Allocation and Grain Yield," Agriculture, MDPI, vol. 12(6), pages 1-17, May.
    19. Yang, Zhiyuan & Zhu, Yuemei & Zhang, Xiaoli & Liao, Qin & Fu, Hao & Cheng, Qingyue & Chen, Zongkui & Sun, Yongjian & Ma, Jun & Zhang, Jinyue & Li, Liangyu & Li, Na, 2023. "Unmanned aerial vehicle direct seeding or integrated mechanical transplanting, which will be the next step for mechanized rice production in China? —A comparison based on energy use efficiency and eco," Energy, Elsevier, vol. 273(C).
    20. Chivu, Luminita & Andrei, Jean Vasile & Zaharia, Marian & Gogonea, Rodica-Manuela, 2020. "A regional agricultural efficiency convergence assessment in Romania – Appraising differences and understanding potentials," Land Use Policy, Elsevier, vol. 99(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:3:p:491-:d:1358901. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.