IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i2p223-d1329683.html
   My bibliography  Save this article

Identifying Plant Functional Traits of Weeds in Fields Planted with Glyphosate-Tolerant Maize for Preferable Weed Management Practices

Author

Listed:
  • Murendeni Kwinda

    (Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
    Foundational Biodiversity Science, Pretoria National Botanical Garden, South African National Biodiversity Institute, 2 Cussonia Ave, Brummeria, Pretoria 0184, South Africa)

  • Stefan John Siebert

    (Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa)

  • Helga Van Coller

    (Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
    South African Environmental Observation Network, Ndlovu Node, Scientific Services, Kruger National Park, Private Bag X1021, Phalaborwa 1390, South Africa)

  • Tlou Samuel Masehela

    (Biodiversity Risk Management, Biosafety and Alien Invasive Species, Department of Forestry, Fisheries and the Environment, Environment House, 473 Steve Biko Road, Pretoria 0083, South Africa)

Abstract

Weed responses in disturbance-prone agroecosystems are linked to specific plant traits that enable their persistence. Understanding how weeds adapt to thrive in these systems in response to herbicide application is important for farmers to improve weed management for enhanced crop productivity. In this study, we investigated the functional traits and types of weed species able to persist within fields of glyphosate-tolerant maize in the Oliver Tambo District of the Eastern Cape Province, South Africa. This was accomplished by exploring the abundance patterns, composition, and richness of specific weed traits and functional types. Frequency measures (%) were used to identify indicator species. A data set comprising 42 indicator weed species and 11 predefined disturbance traits from 28 fields of glyphosate-tolerant maize was considered for functional analysis. Clusters were identified according to the grouping of weed species based on their trait scores, which revealed ten plant functional types (PFTs). Disturbances associated with post-emergence (after ploughing, sowing, and herbicide application) act as filters that select for weed species with traits such as life span, life form, growth form, photosynthetic pathway, carbon storage, and nitrogen-fixing ability to colonise fields. Trait richness did not differ significantly across maize fields. Our results highlighted the functional types and traits that are favourable to weed resistance and survival, and these need to be considered when developing different herbicide application protocols. By understanding which traits are favourable for weed survival post-emergence, farmers can apply targeted weed management to safeguard maize productivity. In addition, successful control of weeds will contribute to landscape-targeted herbicide applications that are less harmful to the environment.

Suggested Citation

  • Murendeni Kwinda & Stefan John Siebert & Helga Van Coller & Tlou Samuel Masehela, 2024. "Identifying Plant Functional Traits of Weeds in Fields Planted with Glyphosate-Tolerant Maize for Preferable Weed Management Practices," Agriculture, MDPI, vol. 14(2), pages 1-20, January.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:2:p:223-:d:1329683
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/2/223/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/2/223/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dale, Virginia H. & Polasky, Stephen, 2007. "Measures of the effects of agricultural practices on ecosystem services," Ecological Economics, Elsevier, vol. 64(2), pages 286-296, December.
    2. Peter J Carrick & Katherine J Forsythe, 2020. "The species composition—ecosystem function relationship: A global meta-analysis using data from intact and recovering ecosystems," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-23, July.
    3. Ortiz-Bobea, Ariel & Tack, Jesse B., 2018. "Another genetic yield revolution is needed to offset climate change effects on U.S. maize," 2018 Annual Meeting, August 5-7, Washington, D.C. 274380, Agricultural and Applied Economics Association.
    4. Muyesaier Tudi & Huada Daniel Ruan & Li Wang & Jia Lyu & Ross Sadler & Des Connell & Cordia Chu & Dung Tri Phung, 2021. "Agriculture Development, Pesticide Application and Its Impact on the Environment," IJERPH, MDPI, vol. 18(3), pages 1-23, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brausmann, Alexandra & Bretschger, Lucas, 2018. "Economic development on a finite planet with stochastic soil degradation," European Economic Review, Elsevier, vol. 108(C), pages 1-19.
    2. Tianheng Jiang & Maomao Wang & Wei Zhang & Cheng Zhu & Feijuan Wang, 2024. "A Comprehensive Analysis of Agricultural Non-Point Source Pollution in China: Current Status, Risk Assessment and Management Strategies," Sustainability, MDPI, vol. 16(6), pages 1-19, March.
    3. Smith, Helen F. & Sullivan, Caroline A., 2014. "Ecosystem services within agricultural landscapes—Farmers' perceptions," Ecological Economics, Elsevier, vol. 98(C), pages 72-80.
    4. Qingqing Yang & Yanhui Gao & Xinjun Yang & Jian Zhang, 2022. "Rural Transformation Driven by Households’ Adaptation to Climate, Policy, Market, and Urbanization: Perspectives from Livelihoods–Land Use on Chinese Loess Plateau," Agriculture, MDPI, vol. 12(8), pages 1-23, July.
    5. Qenani-Petrela, Eivis & Noel, Jay E. & Mastin, Thomas, 2007. "A Benefit Transfer Approach to the Estimation of Agro-Ecosystems Services Benefits: A Case Study of Kern County, California," Research Project Reports 121605, California Polytechnic State University, San Luis Obispo, California Institute for the Study of Specialty Crops.
    6. Rodríguez-Ortega, T. & Olaizola, A.M. & Bernués, A., 2018. "A novel management-based system of payments for ecosystem services for targeted agri-environmental policy," Ecosystem Services, Elsevier, vol. 34(PA), pages 74-84.
    7. Giuseppe Gattuso & Luca Falzone & Chiara Costa & Federica Giambò & Michele Teodoro & Silvia Vivarelli & Massimo Libra & Concettina Fenga, 2022. "Chronic Pesticide Exposure in Farm Workers Is Associated with the Epigenetic Modulation of hsa-miR-199a-5p," IJERPH, MDPI, vol. 19(12), pages 1-10, June.
    8. Ashley E. Larsen & Steven D. Gaines & Olivier Deschênes, 2017. "Agricultural pesticide use and adverse birth outcomes in the San Joaquin Valley of California," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    9. Ehsan Moradi & Jesús Rodrigo-Comino & Enric Terol & Gaspar Mora-Navarro & Alexandre Marco da Silva & Ioannis N. Daliakopoulos & Hassan Khosravi & Manuel Pulido Fernández & Artemi Cerdà, 2020. "Quantifying Soil Compaction in Persimmon Orchards Using ISUM (Improved Stock Unearthing Method) and Core Sampling Methods," Agriculture, MDPI, vol. 10(7), pages 1-18, July.
    10. Dörschner, T. & Musshoff, O., 2015. "How do incentive-based environmental policies affect environment protection initiatives of farmers? An experimental economic analysis using the example of species richness," Ecological Economics, Elsevier, vol. 114(C), pages 90-103.
    11. Qi Zhou, 2022. "Spatial-Temporal Change Characteristic Analysis and Environmental Risk Evaluation of Pesticide Application in Anhui Province," Sustainability, MDPI, vol. 14(18), pages 1-14, September.
    12. Wang, Haoluan & Swallow, Brent M., 2017. "Linking Agricultural Land Conservation and Provision of Ecosystem Services: A Choice Experiment Approach," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258537, Agricultural and Applied Economics Association.
    13. Guangzi Li & Jun Cai, 2022. "Spatial and Temporal Differentiation of Mountain Ecosystem Service Trade-Offs and Synergies: A Case Study of Jieshi Mountain, China," Sustainability, MDPI, vol. 14(8), pages 1-16, April.
    14. Seungki Lee & Yongjie Ji & GianCarlo Moschini, 2021. "Agricultural Innovation and Adaptation to Climate Change: Insights from Genetically Engineered Maize," Center for Agricultural and Rural Development (CARD) Publications 21-wp616, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    15. Fan, Fan & Henriksen, Christian Bugge & Porter, John, 2016. "Valuation of ecosystem services in organic cereal crop production systems with different management practices in relation to organic matter input," Ecosystem Services, Elsevier, vol. 22(PA), pages 117-127.
    16. Beardmore, Leslie & Heagney, Elizabeth & Sullivan, Caroline A., 2019. "Complementary land use in the Richmond River catchment: Evaluating economic and environmental benefits," Land Use Policy, Elsevier, vol. 87(C).
    17. Griewald, Yuliana & Clemens, Gerhard & Kamp, Johannes & Gladun, Elena & Hölzel, Norbert & von Dressler, Hubertus, 2017. "Developing land use scenarios for stakeholder participation in Russia," Land Use Policy, Elsevier, vol. 68(C), pages 264-276.
    18. Blancard, Stéphane & Martin, Elsa, 2014. "Energy efficiency measurement in agriculture with imprecise energy content information," Energy Policy, Elsevier, vol. 66(C), pages 198-208.
    19. María Fernanda de Santiago & Margenny Barrios & Alejandro D’Anatro & Luis Fernando García & Ary Mailhos & Gabriel Pompozzi & Sofía Rehermann & Miguel Simó & Giancarlo Tesitore & Franco Teixeira de Mel, 2022. "From Theory to Practice: Can LEAP/FAO Biodiversity Assessment Guidelines Be a Useful Tool for Knowing the Environmental Status of Livestock Systems?," Sustainability, MDPI, vol. 14(23), pages 1-34, December.
    20. Bhim B Ghaley & Harpinder S Sandhu & John R Porter, 2015. "Relationship between C:N/C:O Stoichiometry and Ecosystem Services in Managed Production Systems," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-14, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:2:p:223-:d:1329683. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.