IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i4p901-d1127746.html
   My bibliography  Save this article

Environmental and Agronomical Factors Limiting Differences in Potato Yielding between Organic and Conventional Production System

Author

Listed:
  • Krystyna Zarzyńska

    (Plant Breeding and Acclimatization Institute, National Research Institute in Radzików, Jadwisin Division, Potato Agronomy Department, 05-140 Serock, Poland)

  • Cezary Trawczyński

    (Plant Breeding and Acclimatization Institute, National Research Institute in Radzików, Jadwisin Division, Potato Agronomy Department, 05-140 Serock, Poland)

  • Milena Pietraszko

    (Plant Breeding and Acclimatization Institute, National Research Institute in Radzików, Jadwisin Division, Potato Agronomy Department, 05-140 Serock, Poland)

Abstract

This paper presents the results of the authors’ own research and literature research on the impact of selected environmental and agronomical factors on the yield of potato grown under the organic system and the possibility of increasing the yield. The results are based on research conducted for several years at the Institute of Plant Breeding and Acclimatization in Jadwisin, Poland. The influence of factors such as soil quality and climatic conditions, selection of varieties, seed potato preparation, irrigation of plantations, complementary fertilization, and protection against the late blight was described. The aim of this work was to indicate which of these factors affect the yield increase and to what extent. It was stated that it is possible to increase the yield of potato tubers grown under the organic system through all of the proposed treatments. In our studies, using drip irrigation and complementary fertilization had the greatest effect (25.5% and 19%, respectively). Seed potato presprouting had a smaller influence (4.3%) on the final tuber yield. In the years with high pressure of the pathogen Phytophthora infestans, the selection of cultivars with high resistance was very important. Most of the agronomical treatments not only improved the total yield of tubers, but also increased the share of tubers with a larger diameter. A very high variability of potato yielding depending on weather conditions and a selection of cultivars was emphasized. We can say that a proper agronomical practice carried out on an organic potato plantation can largely eliminate the yielding gap between a conventional and an organic system.

Suggested Citation

  • Krystyna Zarzyńska & Cezary Trawczyński & Milena Pietraszko, 2023. "Environmental and Agronomical Factors Limiting Differences in Potato Yielding between Organic and Conventional Production System," Agriculture, MDPI, vol. 13(4), pages 1-18, April.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:4:p:901-:d:1127746
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/4/901/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/4/901/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. de Ponti, Tomek & Rijk, Bert & van Ittersum, Martin K., 2012. "The crop yield gap between organic and conventional agriculture," Agricultural Systems, Elsevier, vol. 108(C), pages 1-9.
    2. Fabeiro, C. & Martin de Santa Olalla, F. & de Juan, J. A., 2001. "Yield and size of deficit irrigated potatoes," Agricultural Water Management, Elsevier, vol. 48(3), pages 255-266, June.
    3. Dorota Wichrowska & Małgorzata Szczepanek, 2020. "Possibility of Limiting Mineral Fertilization in Potato Cultivation by Using Bio-fertilizer and Its Influence on Protein Content in Potato Tubers," Agriculture, MDPI, vol. 10(10), pages 1-16, September.
    4. Zehra Ekin, 2019. "Integrated Use of Humic Acid and Plant Growth Promoting Rhizobacteria to Ensure Higher Potato Productivity in Sustainable Agriculture," Sustainability, MDPI, vol. 11(12), pages 1-13, June.
    5. Krystyna Zarzyńska & Dominika Boguszewska-Mańkowska & Beata Feledyn-Szewczyk & Krzysztof Jończyk, 2022. "The Vigor of Seed Potatoes from Organic and Conventional Systems," Agriculture, MDPI, vol. 12(11), pages 1-10, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koffi Djaman & Soum Sanogo & Komlan Koudahe & Samuel Allen & Aminou Saibou & Samuel Essah, 2021. "Characteristics of Organically Grown Compared to Conventionally Grown Potato and the Processed Products: A Review," Sustainability, MDPI, vol. 13(11), pages 1-26, June.
    2. Blasi, E. & Passeri, N. & Franco, S. & Galli, A., 2016. "An ecological footprint approach to environmental–economic evaluation of farm results," Agricultural Systems, Elsevier, vol. 145(C), pages 76-82.
    3. Koffi Djaman & Suat Irmak & Komlan Koudahe & Samuel Allen, 2021. "Irrigation Management in Potato ( Solanum tuberosum L.) Production: A Review," Sustainability, MDPI, vol. 13(3), pages 1-19, February.
    4. Zhang, Buchong & Li, Feng-Min & Huang, Gaobao & Cheng, Zi-Yong & Zhang, Yanhong, 2006. "Yield performance of spring wheat improved by regulated deficit irrigation in an arid area," Agricultural Water Management, Elsevier, vol. 79(1), pages 28-42, January.
    5. Mohamed Allam & Emanuele Radicetti & Valentina Quintarelli & Verdiana Petroselli & Sara Marinari & Roberto Mancinelli, 2022. "Influence of Organic and Mineral Fertilizers on Soil Organic Carbon and Crop Productivity under Different Tillage Systems: A Meta-Analysis," Agriculture, MDPI, vol. 12(4), pages 1-19, March.
    6. Nesar Ahmed & Shirley Thompson & Giovanni M. Turchini, 2020. "Organic aquaculture productivity, environmental sustainability, and food security: insights from organic agriculture," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(6), pages 1253-1267, December.
    7. de la Cruz, Vera Ysabel V. & Tantriani, & Cheng, Weiguo & Tawaraya, Keitaro, 2023. "Yield gap between organic and conventional farming systems across climate types and sub-types: A meta-analysis," Agricultural Systems, Elsevier, vol. 211(C).
    8. Natalia Brzezina & Birgit Kopainsky & Erik Mathijs, 2016. "Can Organic Farming Reduce Vulnerabilities and Enhance the Resilience of the European Food System? A Critical Assessment Using System Dynamics Structural Thinking Tools," Sustainability, MDPI, vol. 8(10), pages 1-32, September.
    9. Trevor W. Crosby & Yi Wang, 2021. "Effects of Different Irrigation Management Practices on Potato ( Solanum tuberosum L.)," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    10. Patrick M. Carr & Greta G. Gramig & Mark A. Liebig, 2013. "Impacts of Organic Zero Tillage Systems on Crops, Weeds, and Soil Quality," Sustainability, MDPI, vol. 5(7), pages 1-30, July.
    11. Althoff, Daniel & Filgueiras, Roberto & Dias, Santos Henrique Brant & Rodrigues, Lineu Neiva, 2019. "Impact of sum-of-hourly and daily timesteps in the computations of reference evapotranspiration across the Brazilian territory," Agricultural Water Management, Elsevier, vol. 226(C).
    12. Ørum, Jens Erik & Boesen, Mads Vejlby & Jovanovic, Zorica & Pedersen, Søren Marcus, 2010. "Farmers' incentives to save water with new irrigation systems and water taxation--A case study of Serbian potato production," Agricultural Water Management, Elsevier, vol. 98(3), pages 465-471, December.
    13. Karlsson, Johan O. & Röös, Elin, 2019. "Resource-efficient use of land and animals—Environmental impacts of food systems based on organic cropping and avoided food-feed competition," Land Use Policy, Elsevier, vol. 85(C), pages 63-72.
    14. Debuschewitz, Emil & Sanders, Jürn, 2021. "Bewertung der Umweltwirkungen des ökologischen Landbaus im Kontext der kontroversen wissenschaftlichen Diskurse," 61st Annual Conference, Berlin, Germany, September 22-24, 2021 317076, German Association of Agricultural Economists (GEWISOLA).
    15. Ierna, Anita & Mauromicale, Giovanni, 2006. "Physiological and growth response to moderate water deficit of off-season potatoes in a Mediterranean environment," Agricultural Water Management, Elsevier, vol. 82(1-2), pages 193-209, April.
    16. Mariarosaria Agostino, 2016. "Organic Agriculture, Greenhouse Gas Emissions and Environmental Efficiency: An Empirical Study on OECD Countries," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 8(11), pages 1-78, November.
    17. Takamitsu Kai & Dinesh Adhikari, 2021. "Effect of Organic and Chemical Fertilizer Application on Apple Nutrient Content and Orchard Soil Condition," Agriculture, MDPI, vol. 11(4), pages 1-10, April.
    18. Carlson, Andrea & Greene, Catherine & Raszap Skorbiansky, Sharon & Hitaj, Claudia & Ha, Kim & Cavigelli, Michel & Ferrier, Peyton & McBride, William, 2023. "U.S. Organic Production, Markets, Consumers, and Policy, 2000-21," USDA Miscellaneous 333551, United States Department of Agriculture.
    19. Ma, Shou-Chen & Duan, Ai-Wang & Wang, Rui & Guan, Zhong-Mei & Yang, Shen-Jiao & Ma, Shou-Tian & Shao, Yun, 2015. "Root-sourced signal and photosynthetic traits, dry matter accumulation and remobilization, and yield stability in winter wheat as affected by regulated deficit irrigation," Agricultural Water Management, Elsevier, vol. 148(C), pages 123-129.
    20. de Moura, Maíse Soares & Silva, Bruno Montoani & Mota, Paula Karen & Borghi, Emerson & Resende, Alvaro Vilela de & Acuña-Guzman, Salvador Francisco & Araújo, Gabriela Soares Santos & da Silva, Lucas d, 2021. "Soil management and diverse crop rotation can mitigate early-stage no-till compaction and improve least limiting water range in a Ferralsol," Agricultural Water Management, Elsevier, vol. 243(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:4:p:901-:d:1127746. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.