IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v11y2021i4p348-d535872.html
   My bibliography  Save this article

Short-Term Carbon Sequestration and Changes of Soil Organic Carbon Pools in Rice under Integrated Nutrient Management in India

Author

Listed:
  • Mousumi Ghosh

    (Department of Agricultural Chemistry and Soil Science, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia 741221, India)

  • Waqar Ashiq

    (School of Environmental Sciences, University of Guelph, Guelph, ON N1G2W1, Canada)

  • Hiteshkumar Bhogilal Vasava

    (School of Environmental Sciences, University of Guelph, Guelph, ON N1G2W1, Canada)

  • Duminda N. Vidana Gamage

    (Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC H9X3V9, Canada)

  • Prasanta K. Patra

    (Department of Agricultural Chemistry and Soil Science, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia 741221, India)

  • Asim Biswas

    (School of Environmental Sciences, University of Guelph, Guelph, ON N1G2W1, Canada)

Abstract

While the capability of integrated nutrient management (INM) in rice systems has been adequately studied, little is known about the related short-term carbon sequestration and changes in soil carbon fractions. Our study examined the responses of organic carbon pools, carbon sequestration and rice yields after application of different organic manures combined with chemical fertilizers in a rice–rice ( Oryza sativa L.) cropping system in the red and laterite agro-climatic zones of West Bengal, India. The treatments included non-fertilized control; rice straw (RS) + nitrogen, phosphorus and potassium fertilizer (NPK); Gliricidia (GL) + NPK; farmyard manure (FYM) + NPK; vermicompost (VC) + NPK; and NPK only. Rice straw + NPK treatment resulted in the highest total organic carbon and passive pool of carbon. Vermicompost + NPK treatment resulted in the highest oxidizable organic carbon (0.69%), dissolved organic carbon (0.007%) and microbial biomass carbon (0.01%), followed by FYM + NPK, GL + NPK and RS + NPK as compared to control. Rice straw + NPK sequestered the highest amount of carbon dioxide (CO 2 ) as the total organic carbon (91.10 t ha −1 ) and passive pool of carbon (85.64 t ha −1 ), whereas VC + NPK resulted in the highest amount of CO 2 (10.24 t ha −1 ) being sequestered as the active pool of carbon, followed by FYM + NPK (8.33 t ha −1 ) and GL + NPK (7.22 t ha −1 ). The application of both NPK only and VC + NPK treatments resulted in the highest grain yields over the three cropping seasons. In spite of high carbon sequestration being observed in more recalcitrant carbon pools, RS + NPK resulted in little increase (3.52 t ha −1 ) in rice yield over the short term. The results of this study suggest that the short-term changes of soil carbon fractions and carbon sequestration primarily depend on the type of organic manure used. Vermicompost, FYM and GL provide more labile carbon, which can improve rice yield over the short term. However, it is suggested to explore the dynamics of different carbon fractions, carbon sequestration in different pools and rice yields over longer periods of time.

Suggested Citation

  • Mousumi Ghosh & Waqar Ashiq & Hiteshkumar Bhogilal Vasava & Duminda N. Vidana Gamage & Prasanta K. Patra & Asim Biswas, 2021. "Short-Term Carbon Sequestration and Changes of Soil Organic Carbon Pools in Rice under Integrated Nutrient Management in India," Agriculture, MDPI, vol. 11(4), pages 1-14, April.
  • Handle: RePEc:gam:jagris:v:11:y:2021:i:4:p:348-:d:535872
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/11/4/348/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/11/4/348/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ladha, J.K. & Fischer, K.S. & Hossain, M. & Hobbs, P.R. & Hardy, B., 2000. "Improving the.Productivity and Sustainability of Rice-Wheat Systems of the lndo-Gangetic Plains: A Synthesis of NARS-IRRI Partnership Research," IRRI Discussion Papers 287597, International Rice Research Institute (IRRI).
    2. L. E. Drinkwater & P. Wagoner & M. Sarrantonio, 1998. "Legume-based cropping systems have reduced carbon and nitrogen losses," Nature, Nature, vol. 396(6708), pages 262-265, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. You, Liangzhi & Wood, Stanley, 2006. "An entropy approach to spatial disaggregation of agricultural production," Agricultural Systems, Elsevier, vol. 90(1-3), pages 329-347, October.
    3. Muller, Adrian, 2006. "Sustainable Agriculture and the Production of Biomass for Energy Use," Working Papers in Economics 216, University of Gothenburg, Department of Economics, revised 01 Aug 2008.
    4. Lucas Contarato Pilon & Jordano Vaz Ambus & Elena Blume & Rodrigo Josemar Seminoti Jacques & José Miguel Reichert, 2023. "Citrus Orchards in Agroforestry, Organic, and Conventional Systems: Soil Quality and Functioning," Sustainability, MDPI, vol. 15(17), pages 1-28, August.
    5. V.K. Mishra & S. Srivastava & A.K. Bhardwaj & D.K. Sharma & Y.P. Singh & A.K. Nayak, 2015. "Resource conservation strategies for rice‐wheat cropping systems on partially reclaimed sodic soils of the Indo‐Gangetic region, and their effects on soil carbon," Natural Resources Forum, Blackwell Publishing, vol. 39(2), pages 110-122, May.
    6. Xiaolin Yang & Jinran Xiong & Taisheng Du & Xiaotang Ju & Yantai Gan & Sien Li & Longlong Xia & Yanjun Shen & Steven Pacenka & Tammo S. Steenhuis & Kadambot H. M. Siddique & Shaozhong Kang & Klaus But, 2024. "Diversifying crop rotation increases food production, reduces net greenhouse gas emissions and improves soil health," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Jouan, Julia & Heinrichs, Julia & Britz, Wolfgang & Pahmeyer, Christoph, 2019. "Legume production challenged by European policy coherence: a case-study approach from French and German dairy farms," 172nd EAAE Seminar, May 28-29, 2019, Brussels, Belgium 289765, European Association of Agricultural Economists.
    8. Sanna Lötjönen & Markku Ollikainen, 2017. "Does crop rotation with legumes provide an efficient means to reduce nutrient loads and GHG emissions?," Review of Agricultural, Food and Environmental Studies, Springer, vol. 98(4), pages 283-312, December.
    9. Argiles, Josep M. & Brown, Nestor Duch, 2011. "A comparison of the economic and environmental performances of conventional and organic farming: evidence from financial statements," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 11(1), pages 1-18, January.
    10. Aravindakshan, Sreejith & Sherief, Aliyaru Kunju, 2010. "The wanted change against climate change: assessing the role of organic farming as an adaptation strategy," MPRA Paper 27205, University Library of Munich, Germany.
    11. Susanne Wiesner & Alison J. Duff & Ankur R. Desai & Kevin Panke-Buisse, 2020. "Increasing Dairy Sustainability with Integrated Crop–Livestock Farming," Sustainability, MDPI, vol. 12(3), pages 1-21, January.
    12. Muhammad Sohail Memon & Jun Guo & Ahmed Ali Tagar & Nazia Perveen & Changying Ji & Shamim Ara Memon & Noreena Memon, 2018. "The Effects of Tillage and Straw Incorporation on Soil Organic Carbon Status, Rice Crop Productivity, and Sustainability in the Rice-Wheat Cropping System of Eastern China," Sustainability, MDPI, vol. 10(4), pages 1-14, March.
    13. Bartłomiej Bajan & Joanna Łukasiewicz & Aldona Mrówczyńska-Kamińska, 2021. "Energy Consumption and Its Structures in Food Production Systems of the Visegrad Group Countries Compared with EU-15 Countries," Energies, MDPI, vol. 14(13), pages 1-24, July.
    14. R. Wassmann & H.U. Neue & J.K. Ladha & M.S. Aulakh, 2004. "Mitigating Greenhouse Gas Emissions from Rice-Wheat Cropping Systems in Asia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 6(1), pages 65-90, March.
    15. Ribaudo, Marc & Hansen, LeRoy T. & Hellerstein, Daniel & Greene, Catherine R., 2008. "The Use of Markets To Increase Private Investment in Environmental Stewardship," Economic Research Report 56473, United States Department of Agriculture, Economic Research Service.
    16. Tiziano Gomiero, 2013. "Alternative Land Management Strategies and Their Impact on Soil Conservation," Agriculture, MDPI, vol. 3(3), pages 1-20, August.
    17. Greene, Catherine R. & Kremen, Amy, 2003. "U.S. Organic Farming In 2000-2001: Adoption Of Certified Systems," Agricultural Information Bulletins 33769, United States Department of Agriculture, Economic Research Service.
    18. Christian Thierfelder & Pauline Chivenge & Walter Mupangwa & Todd S. Rosenstock & Christine Lamanna & Joseph X. Eyre, 2017. "How climate-smart is conservation agriculture (CA)? – its potential to deliver on adaptation, mitigation and productivity on smallholder farms in southern Africa," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(3), pages 537-560, June.
    19. Sekar, I. & Pal, Suresh, 2012. "Rice and Wheat Crop Productivity in the Indo-Gangetic Plains of India: Changing Pattern of Growth and Future Strategies," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 67(2), pages 1-15.
    20. Aimee N. Hafla & Jennifer W. MacAdam & Kathy J. Soder, 2013. "Sustainability of US Organic Beef and Dairy Production Systems: Soil, Plant and Cattle Interactions," Sustainability, MDPI, vol. 5(7), pages 1-26, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:11:y:2021:i:4:p:348-:d:535872. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.