IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v10y2020i9p421-d417559.html
   My bibliography  Save this article

Crop Productivity and Climatic Conditions: Evidence from Hungary

Author

Listed:
  • Zoltán Bakucs

    (Institute of Economics, Centre for Economic and Regional Studies, Tóth Kálmán u. 4, 1097 Budapest, Hungary)

  • Imre Fertő

    (Institute of Economics, Centre for Economic and Regional Studies, Tóth Kálmán u. 4, 1097 Budapest, Hungary
    Doctoral School in Management and Organizational Sciences, Kaposvár Campus, Szent István University, Guba Sándor u. 40, 7400 Kaposvár, Hungary)

  • Enikő Vígh

    (NARIC Research Institute of Agricultural Economics, Zsil utca 3–5, 1093 Budapest, Hungary
    Department of Economics, Partium Christian University, Str. Primăriei, Nr. 36, 410209 Oradea, Romania)

Abstract

Hungarian agriculture is expected to experience greater risks due to more variability in crop productivity due to increasing yearly average temperatures and extreme precipitation patterns. This study investigates the effect of changing climatic conditions on productivity, using a Hungarian sample of crop producers for a 12-year time period. Our empirical analysis employs True Fixed Effects frontier models of Farm Accountancy Data Network data that are merged with specific meteorological data representatively maintained for seeding, vegetative, and generative periods for cereals, oil seed and protein crops, along with soil quality and usage-related data. Estimations indicate that climate variables have significant impacts on technical efficiency. In addition, calculation suggest that an increase in temperature during seeding and vegetative periods, combined with higher precipitation levels in May and June, will reduce crop farmers’ production frontier. Estimations explain the variance, while the technical efficiency (TE) scores emphasize the impact of the difference in soil quality and its water absorption capacity.

Suggested Citation

  • Zoltán Bakucs & Imre Fertő & Enikő Vígh, 2020. "Crop Productivity and Climatic Conditions: Evidence from Hungary," Agriculture, MDPI, vol. 10(9), pages 1-12, September.
  • Handle: RePEc:gam:jagris:v:10:y:2020:i:9:p:421-:d:417559
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/10/9/421/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/10/9/421/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Efthymios G. Tsionas, 2002. "Stochastic frontier models with random coefficients," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(2), pages 127-147.
    2. Meeusen, Wim & van den Broeck, J, 1977. "Technical Efficiency and Dimension of the Firm: Some Results on the Use of Frontier Production Functions," Empirical Economics, Springer, vol. 2(2), pages 109-122.
    3. Sebastian Sippel & F Otto, 2014. "Beyond climatological extremes - assessing how the odds of hydrometeorological extreme events in South-East Europe change in a warming climate," Climatic Change, Springer, vol. 125(3), pages 381-398, August.
    4. Mukherjee, Deep & Bravo-Ureta, Boris E. & De Vries, Albert, 2013. "Dairy productivity and climatic conditions: econometric evidence from South-eastern united States," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 57(1), pages 1-18.
    5. Olivier Deschênes & Michael Greenstone, 2007. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather," American Economic Review, American Economic Association, vol. 97(1), pages 354-385, March.
    6. Nigel Key & Stacy Sneeringer, 2014. "Potential Effects of Climate Change on the Productivity of U.S. Dairies," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 96(4), pages 1136-1156.
    7. Schmidt, Peter & Sickles, Robin C, 1984. "Production Frontiers and Panel Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(4), pages 367-374, October.
    8. Federico Belotti & Giuseppe Ilardi, 2012. "Consistent Estimation of the “True” Fixed-effects Stochastic Frontier Model," CEIS Research Paper 231, Tor Vergata University, CEIS, revised 18 Apr 2012.
    9. Eric Njuki & Boris E Bravo-Ureta & Christopher J O’Donnell, 2018. "A new look at the decomposition of agricultural productivity growth incorporating weather effects," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-21, February.
    10. Greene, William, 2005. "Reconsidering heterogeneity in panel data estimators of the stochastic frontier model," Journal of Econometrics, Elsevier, vol. 126(2), pages 269-303, June.
    11. Alvarez, Antonio & del Corral, Julio & Tauer, Loren W., 2012. "Modeling Unobserved Heterogeneity in New York Dairy Farms: One-Stage versus Two-Stage Models," Agricultural and Resource Economics Review, Cambridge University Press, vol. 41(3), pages 275-285, December.
    12. Awudu Abdulai & Hendrik Tietje, 2007. "Estimating technical efficiency under unobserved heterogeneity with stochastic frontier models: application to northern German dairy farms," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 34(3), pages 393-416, September.
    13. Schmidt, Peter & Knox Lovell, C. A., 1979. "Estimating technical and allocative inefficiency relative to stochastic production and cost frontiers," Journal of Econometrics, Elsevier, vol. 9(3), pages 343-366, February.
    14. Battese, George E. & Coelli, Tim J., 1988. "Prediction of firm-level technical efficiencies with a generalized frontier production function and panel data," Journal of Econometrics, Elsevier, vol. 38(3), pages 387-399, July.
    15. Pitt, Mark M. & Lee, Lung-Fei, 1981. "The measurement and sources of technical inefficiency in the Indonesian weaving industry," Journal of Development Economics, Elsevier, vol. 9(1), pages 43-64, August.
    16. Pytrik Reidsma & Alfons Oude Lansink & Frank Ewert, 2009. "Economic impacts of climatic variability and subsidies on European agriculture and observed adaptation strategies," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 14(1), pages 35-59, January.
    17. Lisandro Roco & Boris Bravo-Ureta & Alejandra Engler & Roberto Jara-Rojas, 2017. "The Impact of Climatic Change Adaptation on Agricultural Productivity in Central Chile: A Stochastic Production Frontier Approach," Sustainability, MDPI, vol. 9(9), pages 1-16, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Veronika Fenyves & Tibor Tarnóczi & Zoltán Bács & Dóra Kerezsi & Péter Bajnai & Mihály Szoboszlai, 2022. "Financial efficiency analysis of Hungarian agriculture, fisheries and forestry sector," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 68(11), pages 413-426.
    2. Felicia Chețan & Teodor Rusu & Cornel Chețan & Alina Șimon & Ana-Maria Vălean & Adrian Ovidiu Ceclan & Marius Bărdaș & Adina Tărău, 2023. "Application of Unconventional Tillage Systems to Maize Cultivation and Measures for Rational Use of Agricultural Lands," Land, MDPI, vol. 12(11), pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Federico Belotti & Silvio Daidone & Giuseppe Ilardi & Vincenzo Atella, 2013. "Stochastic frontier analysis using Stata," Stata Journal, StataCorp LP, vol. 13(4), pages 718-758, December.
    2. Farsi, Mehdi & Filippini, Massimo, 2009. "An analysis of cost efficiency in Swiss multi-utilities," Energy Economics, Elsevier, vol. 31(2), pages 306-315, March.
    3. Cullmann, Astrid & Farsi, Mehdi & Filippini Massimo, 2009. "Unobserved Heterogeneity and International Benchmarking in Public Trasport," Quaderni della facoltà di Scienze economiche dell'Università di Lugano 0904, USI Università della Svizzera italiana.
    4. Lajos Baráth & Imre Fertő & Heinrich Hockmann, 2020. "Technological Differences, Theoretical Consistency, and Technical Efficiency: The Case of Hungarian Crop-Producing Farms," Sustainability, MDPI, vol. 12(3), pages 1-18, February.
    5. Eric Njuki & Boris E Bravo-Ureta & Víctor E Cabrera, 2020. "Climatic effects and total factor productivity: econometric evidence for Wisconsin dairy farms," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 47(3), pages 1276-1301.
    6. Luis R. Murillo‐Zamorano, 2004. "Economic Efficiency and Frontier Techniques," Journal of Economic Surveys, Wiley Blackwell, vol. 18(1), pages 33-77, February.
    7. Yélou, Clément & Larue, Bruno & Tran, Kien C., 2010. "Threshold effects in panel data stochastic frontier models of dairy production in Canada," Economic Modelling, Elsevier, vol. 27(3), pages 641-647, May.
    8. Victor Moutinho & Mara Madaleno, 2021. "Assessing Eco-Efficiency in Asian and African Countries Using Stochastic Frontier Analysis," Energies, MDPI, vol. 14(4), pages 1-17, February.
    9. Eric Njuki & Boris E Bravo-Ureta & Christopher J O’Donnell, 2018. "A new look at the decomposition of agricultural productivity growth incorporating weather effects," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-21, February.
    10. Magambo, Isaiah & Dikgang, Johane & Gelo, Dambala & Tregenna, Fiona, 2021. "Environmental and Technical Efficiency in Large Gold Mines in Developing Countries," MPRA Paper 108068, University Library of Munich, Germany.
    11. Wang, Hung-Jen, 2006. "Stochastic frontier models," MPRA Paper 31079, University Library of Munich, Germany.
    12. Massimo Filippini & Lester C. Hunt, 2013. "'Underlying Energy Efficiency' in the US," CER-ETH Economics working paper series 13/181, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    13. Lajos Baráth & Imre Fertő & Štefan Bojnec, 2018. "Are farms in less favored areas less efficient?," Agricultural Economics, International Association of Agricultural Economists, vol. 49(1), pages 3-12, January.
    14. Keller, Michael, 2020. "Wasted windfalls: Inefficiencies in health care spending in oil rich countries," Resources Policy, Elsevier, vol. 66(C).
    15. Federico Belotti & Giuseppe Ilardi & Andrea Piano Mortari, 2019. "Estimation of Stochastic Frontier Panel Data Models with Spatial Inefficiency," CEIS Research Paper 459, Tor Vergata University, CEIS, revised 30 May 2019.
    16. Yoro Diallo & Sébastien Marchand & Etienne Espagne, 2019. "Impacts of extreme events on technical efficiency in Vietnamese agriculture," CIRED Working Papers halshs-02080285, HAL.
    17. Emilie Caldeira & Alou Adessé Dama & Ali Compaoré & Mario Mansour & Grégoire Rota-Graziosi, 2020. "Tax effort in Sub-Saharan African countries : evidence from a new dataset," Working Papers hal-02543162, HAL.
    18. Shchetynin, Yevhenii & Nazrullaeva, Eugenia, 2012. "Effects of fixed capital investments on technical efficiency in food industry," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 28(4), pages 63-84.
    19. William Horrace & Seth Richards-Shubik & Ian Wright, 2015. "Expected efficiency ranks from parametric stochastic frontier models," Empirical Economics, Springer, vol. 48(2), pages 829-848, March.
    20. Gralka, Sabine, 2018. "Stochastic frontier analysis in higher education: A systematic review," CEPIE Working Papers 05/18, Technische Universität Dresden, Center of Public and International Economics (CEPIE).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:10:y:2020:i:9:p:421-:d:417559. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.