IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v10y2020i9p369-d401406.html
   My bibliography  Save this article

Comparative Study on Leaf Gas Exchange, Growth, Grain Yield, and Water Use Efficiency under Irrigation Regimes for Two Maize Hybrids

Author

Listed:
  • Muhammad Irfan Ahmad

    (School of Agronomy, Anhui Agricultural University, Hefei 230036, China
    These authors have contributed equally to this work.)

  • Adnan Noor Shah

    (School of Agronomy, Anhui Agricultural University, Hefei 230036, China
    These authors have contributed equally to this work.)

  • Jianqiang Sun

    (The Farming Development Center of Mengcheng County, Mengcheng 233500, China)

  • Youhong Song

    (School of Agronomy, Anhui Agricultural University, Hefei 230036, China)

Abstract

Drought stress has been a great challenge for the sustainability of maize ( Zea mays L.) production in arid and semi-arid regions. The utilization of drought-tolerant hybrids and proper irrigation regimes represent a management strategy to stabilize maize production under water-limited conditions. A two-year field experiment was conducted to assess the leaf gas exchange, growth, grain yield, and water use efficiency in two cultivars of maize, i.e., Zhengdan 958 (H1) and Zhongdan 909 (H2), under different water regimes, i.e., full irrigation (FI), reproductive irrigation (RI), and rainfed (RF). Plant samples were collected at different growth stages to measure the maize growth and development under the three irrigation regimes. The grain yield in RF was significantly reduced by 30.4% (H1) and 31.1% (H2); and the water use efficiency (WUE) by 8.5% (H1) and 9.3% (H2) compared with FI. On the other hand, irrigation application at the flowering stage was shown to significantly boost the grain yield by 40.3% (H1) and 25.5% (H2); and the WUE by 27.6% (H1) and 14.1% (H2) compared to RF. This indicated that H1 benefited more from irrigation use compared to H2. The improved grain yield through reproductive irrigation was due to the greater soil plant analysis development (SPAD), net photosynthesis, and biomass production when compared to zero irrigation. Zhengdan 958 was shown to be relatively more resistant to drought stress during flowering compared to Zhongdan 909. Thus, to achieve reliable maize production in Huaibei Plain, reproductive irrigation is recommended, combined with Zhengdan 958.

Suggested Citation

  • Muhammad Irfan Ahmad & Adnan Noor Shah & Jianqiang Sun & Youhong Song, 2020. "Comparative Study on Leaf Gas Exchange, Growth, Grain Yield, and Water Use Efficiency under Irrigation Regimes for Two Maize Hybrids," Agriculture, MDPI, vol. 10(9), pages 1-16, August.
  • Handle: RePEc:gam:jagris:v:10:y:2020:i:9:p:369-:d:401406
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/10/9/369/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/10/9/369/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hao, Baozhen & Xue, Qingwu & Marek, Thomas H. & Jessup, Kirk E. & Hou, Xiaobo & Xu, Wenwei & Bynum, Edsel D. & Bean, Brent W., 2015. "Soil water extraction, water use, and grain yield by drought-tolerant maize on the Texas High Plains," Agricultural Water Management, Elsevier, vol. 155(C), pages 11-21.
    2. Eusebio Cano & Carmelo M. Musarella & Ana Cano-Ortiz & José C. Piñar Fuentes & Alfonso Rodríguez Torres & Sara Del Río González & Carlos J. Pinto Gomes & Ricardo Quinto-Canas & Giovanni Spampinato, 2019. "Geobotanical Study of the Microforests of Juniperus oxycedrus subsp. badia in the Central and Southern Iberian Peninsula," Sustainability, MDPI, vol. 11(4), pages 1-31, February.
    3. Felicia Wu & Hasan Guclu, 2013. "Global Maize Trade and Food Security: Implications from a Social Network Model," Risk Analysis, John Wiley & Sons, vol. 33(12), pages 2168-2178, December.
    4. Pandey, R. K. & Maranville, J. W. & Chetima, M. M., 2000. "Deficit irrigation and nitrogen effects on maize in a Sahelian environment: II. Shoot growth, nitrogen uptake and water extraction," Agricultural Water Management, Elsevier, vol. 46(1), pages 15-27, November.
    5. Pandey, R. K. & Maranville, J. W. & Admou, A., 2000. "Deficit irrigation and nitrogen effects on maize in a Sahelian environment: I. Grain yield and yield components," Agricultural Water Management, Elsevier, vol. 46(1), pages 1-13, November.
    6. Liu, Yi & Li, Shiqing & Chen, Fang & Yang, Shenjiao & Chen, Xinping, 2010. "Soil water dynamics and water use efficiency in spring maize (Zea mays L.) fields subjected to different water management practices on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 97(5), pages 769-775, May.
    7. Farre, Imma & Faci, Jose Maria, 2006. "Comparative response of maize (Zea mays L.) and sorghum (Sorghum bicolor L. Moench) to deficit irrigation in a Mediterranean environment," Agricultural Water Management, Elsevier, vol. 83(1-2), pages 135-143, May.
    8. Panda, R. K. & Behera, S. K. & Kashyap, P. S., 2004. "Effective management of irrigation water for maize under stressed conditions," Agricultural Water Management, Elsevier, vol. 66(3), pages 181-203, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria Wanic & Mariola Parzonka, 2023. "Assessing the Role of Crop Rotation in Shaping Foliage Characteristics and Leaf Gas Exchange Parameters for Winter Wheat," Agriculture, MDPI, vol. 13(5), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Srivastava, R.K. & Panda, R.K. & Chakraborty, A. & Halder, D., 2018. "Comparison of actual evapotranspiration of irrigated maize in a sub-humid region using four different canopy resistance based approaches," Agricultural Water Management, Elsevier, vol. 202(C), pages 156-165.
    2. Comas, Louise H. & Trout, Thomas J. & DeJonge, Kendall C. & Zhang, Huihui & Gleason, Sean M., 2019. "Water productivity under strategic growth stage-based deficit irrigation in maize," Agricultural Water Management, Elsevier, vol. 212(C), pages 433-440.
    3. Zhang, Guangxin & Dai, Rongcheng & Ma, Wenzhuo & Fan, Hengzhi & Meng, Wenhui & Han, Juan & Liao, Yuncheng, 2022. "Optimizing the ridge–furrow ratio and nitrogen application rate can increase the grain yield and water use efficiency of rain-fed spring maize in the Loess Plateau region of China," Agricultural Water Management, Elsevier, vol. 262(C).
    4. Hao, Baozhen & Xue, Qingwu & Marek, Thomas H. & Jessup, Kirk E. & Hou, Xiaobo & Xu, Wenwei & Bynum, Edsel D. & Bean, Brent W., 2015. "Soil water extraction, water use, and grain yield by drought-tolerant maize on the Texas High Plains," Agricultural Water Management, Elsevier, vol. 155(C), pages 11-21.
    5. Domínguez, A. & de Juan, J.A. & Tarjuelo, J.M. & Martínez, R.S. & Martínez-Romero, A., 2012. "Determination of optimal regulated deficit irrigation strategies for maize in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 110(C), pages 67-77.
    6. Manning, Dale T. & Lurbé, Salvador & Comas, Louise H. & Trout, Thomas J. & Flynn, Nora & Fonte, Steven J., 2018. "Economic viability of deficit irrigation in the Western US," Agricultural Water Management, Elsevier, vol. 196(C), pages 114-123.
    7. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    8. Greaves, Geneille E. & Wang, Yu-Min, 2017. "Effect of regulated deficit irrigation scheduling on water use of corn in southern Taiwan tropical environment," Agricultural Water Management, Elsevier, vol. 188(C), pages 115-125.
    9. Dagdelen, Necdet & Yilmaz, Ersel & Sezgin, Fuat & Gurbuz, Talih, 2006. "Water-yield relation and water use efficiency of cotton (Gossypium hirsutum L.) and second crop corn (Zea mays L.) in western Turkey," Agricultural Water Management, Elsevier, vol. 82(1-2), pages 63-85, April.
    10. Shi, Rongchao & Wang, Jintao & Tong, Ling & Du, Taisheng & Shukla, Manoj Kumar & Jiang, Xuelian & Li, Donghao & Qin, Yonghui & He, Liuyue & Bai, Xiaorui & Guo, Xiaoxu, 2022. "Optimizing planting density and irrigation depth of hybrid maize seed production under limited water availability," Agricultural Water Management, Elsevier, vol. 271(C).
    11. Oktem, A., 2008. "Effect of water shortage on yield, and protein and mineral compositions of drip-irrigated sweet corn in sustainable agricultural systems," Agricultural Water Management, Elsevier, vol. 95(9), pages 1003-1010, September.
    12. Farré, I. & Faci, J.-M., 2009. "Deficit irrigation in maize for reducing agricultural water use in a Mediterranean environment," Agricultural Water Management, Elsevier, vol. 96(3), pages 383-394, March.
    13. Lo, Tsz Him & Rudnick, Daran R. & Burr, Charles A. & Stockton, Matthew C. & Werle, Rodrigo, 2019. "Approaches to evaluating grower irrigation and fertilizer nitrogen amount and timing," Agricultural Water Management, Elsevier, vol. 213(C), pages 693-706.
    14. Gheysari, Mahdi & Mirlatifi, Seyed Majid & Bannayan, Mohammad & Homaee, Mehdi & Hoogenboom, Gerrit, 2009. "Interaction of water and nitrogen on maize grown for silage," Agricultural Water Management, Elsevier, vol. 96(5), pages 809-821, May.
    15. Igbadun, Henry E. & Tarimo, Andrew K.P.R. & Salim, Baanda A. & Mahoo, Henry F., 2007. "Evaluation of selected crop water production functions for an irrigated maize crop," Agricultural Water Management, Elsevier, vol. 94(1-3), pages 1-10, December.
    16. Franco-Luesma, Samuel & Álvaro-Fuentes, Jorge & Plaza-Bonilla, Daniel & Arrúe, José Luis & Cantero-Martínez, Carlos & Cavero, José, 2019. "Influence of irrigation time and frequency on greenhouse gas emissions in a solid-set sprinkler-irrigated maize under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 221(C), pages 303-311.
    17. Suat Irmak & Ali T. Mohammed & William Kranz & C.D. Yonts & Simon van Donk, 2020. "Irrigation-Yield Production Functions and Irrigation Water Use Efficiency Response of Drought-Tolerant and Non-Drought-Tolerant Maize Hybrids under Different Irrigation Levels, Population Densities, a," Sustainability, MDPI, vol. 12(1), pages 1-26, January.
    18. Wang, Feng & Meng, Haofeng & Xie, Ruizhi & Wang, Keru & Ming, Bo & Hou, Peng & Xue, Jun & Li, Shaokun, 2023. "Optimizing deficit irrigation and regulated deficit irrigation methods increases water productivity in maize," Agricultural Water Management, Elsevier, vol. 280(C).
    19. Attia, Ahmed & El-Hendawy, Salah & Al-Suhaibani, Nasser & Alotaibi, Majed & Tahir, Muhammad Usman & Kamal, Khaled Y., 2021. "Evaluating deficit irrigation scheduling strategies to improve yield and water productivity of maize in arid environment using simulation," Agricultural Water Management, Elsevier, vol. 249(C).
    20. Folberth, Christian & Yang, Hong & Gaiser, Thomas & Abbaspour, Karim C. & Schulin, Rainer, 2013. "Modeling maize yield responses to improvement in nutrient, water and cultivar inputs in sub-Saharan Africa," Agricultural Systems, Elsevier, vol. 119(C), pages 22-34.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:10:y:2020:i:9:p:369-:d:401406. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.