IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v155y2015icp11-21.html
   My bibliography  Save this article

Soil water extraction, water use, and grain yield by drought-tolerant maize on the Texas High Plains

Author

Listed:
  • Hao, Baozhen
  • Xue, Qingwu
  • Marek, Thomas H.
  • Jessup, Kirk E.
  • Hou, Xiaobo
  • Xu, Wenwei
  • Bynum, Edsel D.
  • Bean, Brent W.

Abstract

Anticipated water shortages pose a challenge to the sustainability of maize (Zea mays L.) production on the Texas High Plains. Adoption of drought-tolerant (DT) hybrids is a critical management strategy for maize production under water-limited conditions. However, limited information is available concerning water use by recently released DT hybrids. The objective of this study was to investigate the soil profile water extraction, evapotranspiration (ET), water use efficiency (WUE), and grain yield of one conventional and one DT hybrid. Field experiments were conducted in 2012 and 2013. The DT hybrid (AQUAmax™ P1151HR) and the conventional hybrid (33D49) were grown under three water regimes (I100, I75 and I50, referring to 100%, 75% and 50% of the ET requirement, respectively). The depth of soil water extraction was not affected by hybrid or water regime with the maximum extraction depth being 1.2–1.4m. Water extraction was higher at I50 than at I75 and I100. The maximum soil water extraction at I50, I75 and I100 occurred in 0.6–0.8m, 0.6–1.0m and 0.8–1.0m soil layers, respectively. Hybrid differences in soil water extraction were found in 2012, mainly at the grain-filling stage. At I100, P1151HR had less soil water extraction than 33D49. Under water stress conditions at I50, P1151HR had less soil water extraction in the upper soil layers but more water extraction in the deeper layers than 33D49. P1151HR had the same or less seasonal ET as compared to 33D49, indicating that the AQUAmax hybrid did not use more water than the conventional hybrid. P1151HR had higher yield and WUE than 33D49, particularly under the lower water regimes. On the average, yield and WUE of P1151HR were 6% and 9%, 14% and 17%, 24% and 30% higher than those of 33D49 at I100, I75 and I50, respectively. Higher yield of DT hybrid was associated with a higher biomass, a greater harvest index, and heavier kernel weight as compared to the conventional hybrid.

Suggested Citation

  • Hao, Baozhen & Xue, Qingwu & Marek, Thomas H. & Jessup, Kirk E. & Hou, Xiaobo & Xu, Wenwei & Bynum, Edsel D. & Bean, Brent W., 2015. "Soil water extraction, water use, and grain yield by drought-tolerant maize on the Texas High Plains," Agricultural Water Management, Elsevier, vol. 155(C), pages 11-21.
  • Handle: RePEc:eee:agiwat:v:155:y:2015:i:c:p:11-21
    DOI: 10.1016/j.agwat.2015.03.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377415000827
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2015.03.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Payero, J.O. & Tarkalson, D.D. & Irmak, S. & Davison, D. & Petersen, J.L., 2009. "Effect of timing of a deficit-irrigation allocation on corn evapotranspiration, yield, water use efficiency and dry mass," Agricultural Water Management, Elsevier, vol. 96(10), pages 1387-1397, October.
    2. Jeff Tollefson, 2011. "Drought-tolerant maize gets US debut," Nature, Nature, vol. 469(7329), pages 144-144, January.
    3. Ball, V. Eldon, 2008. "Agricultural Productivity Grew in Every State," Amber Waves:The Economics of Food, Farming, Natural Resources, and Rural America, United States Department of Agriculture, Economic Research Service, pages 1-3, September.
    4. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    5. Banziger, Marianne & Setimela, Peter S. & Hodson, David & Vivek, Bindiganavile, 2006. "Breeding for improved abiotic stress tolerance in maize adapted to southern Africa," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 212-224, February.
    6. Pandey, R. K. & Maranville, J. W. & Chetima, M. M., 2000. "Deficit irrigation and nitrogen effects on maize in a Sahelian environment: II. Shoot growth, nitrogen uptake and water extraction," Agricultural Water Management, Elsevier, vol. 46(1), pages 15-27, November.
    7. Lenka, S. & Singh, A.K. & Lenka, N.K., 2009. "Water and nitrogen interaction on soil profile water extraction and ET in maize-wheat cropping system," Agricultural Water Management, Elsevier, vol. 96(2), pages 195-207, February.
    8. Tolk, Judy A. & Howell, Terry A., 2003. "Water use efficiencies of grain sorghum grown in three USA southern Great Plains soils," Agricultural Water Management, Elsevier, vol. 59(2), pages 97-111, March.
    9. Farre, Imma & Faci, Jose Maria, 2006. "Comparative response of maize (Zea mays L.) and sorghum (Sorghum bicolor L. Moench) to deficit irrigation in a Mediterranean environment," Agricultural Water Management, Elsevier, vol. 83(1-2), pages 135-143, May.
    10. Panda, R. K. & Behera, S. K. & Kashyap, P. S., 2004. "Effective management of irrigation water for maize under stressed conditions," Agricultural Water Management, Elsevier, vol. 66(3), pages 181-203, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stepanovic, Strahinja & Rudnick, Daran & Kruger, Greg, 2021. "Impact of maize hybrid selection on water productivity under deficit irrigation in semiarid western Nebraska," Agricultural Water Management, Elsevier, vol. 244(C).
    2. Singh, Sukhbir & Angadi, Sangamesh V. & Grover, Kulbhushan K. & Hilaire, Rolston St. & Begna, Sultan, 2016. "Effect of growth stage based irrigation on soil water extraction and water use efficiency of spring safflower cultivars," Agricultural Water Management, Elsevier, vol. 177(C), pages 432-439.
    3. Chen, Yong & Marek, Gary W. & Marek, Thomas H. & Porter, Dana O. & Brauer, David K. & Srinivasan, Raghavan, 2021. "Simulating the effects of agricultural production practices on water conservation and crop yields using an improved SWAT model in the Texas High Plains, USA," Agricultural Water Management, Elsevier, vol. 244(C).
    4. Su, Zheng’e & Zhao, Jin & Marek, Thomas H. & Liu, Ke & Harrison, Matthew Tom & Xue, Qingwu, 2022. "Drought tolerant maize hybrids have higher yields and lower water use under drought conditions at a regional scale," Agricultural Water Management, Elsevier, vol. 274(C).
    5. Bhattarai, Bishwoyog & Singh, Sukhbir & West, Charles P. & Ritchie, Glen L. & Trostle, Calvin L., 2020. "Water Depletion Pattern and Water Use Efficiency of Forage Sorghum, Pearl millet, and Corn Under Water Limiting Condition," Agricultural Water Management, Elsevier, vol. 238(C).
    6. Zhang, Xiying & Qin, Wenli & Chen, Suying & Shao, Liwei & Sun, Hongyong, 2017. "Responses of yield and WUE of winter wheat to water stress during the past three decades—A case study in the North China Plain," Agricultural Water Management, Elsevier, vol. 179(C), pages 47-54.
    7. Ali Sarıdaş, Mehmet & Kapur, Burçak & Çeliktopuz, Eser & Şahiner, Yeşim & Kargı, Sevgi Paydaş, 2021. "Land productivity, irrigation water use efficiency and fruit quality under various plastic mulch colors and irrigation regimes of strawberry in the eastern Mediterranean region of Turkey," Agricultural Water Management, Elsevier, vol. 245(C).
    8. He, Rui & He, Min & Xu, Haidong & Zhang, Kun & Zhang, Mingcai & Ren, Dan & Li, Zhaohu & Zhou, Yuyi & Duan, Liusheng, 2023. "A novel plant growth regulator brazide improved maize water productivity in the arid region of Northwest China," Agricultural Water Management, Elsevier, vol. 287(C).
    9. Singh, Manpreet & Singh, Sukhbir & Deb, Sanjit & Ritchie, Glen, 2023. "Root distribution, soil water depletion, and water productivity of sweet corn under deficit irrigation and biochar application," Agricultural Water Management, Elsevier, vol. 279(C).
    10. Araya, A. & Prasad, P.V.V. & Gowda, P.H. & Sharda, V. & Rice, C.W. & Ciampitti, I.A., 2021. "Evaluating optimal irrigation strategies for maize in Western Kansas," Agricultural Water Management, Elsevier, vol. 246(C).
    11. Muhammad Irfan Ahmad & Adnan Noor Shah & Jianqiang Sun & Youhong Song, 2020. "Comparative Study on Leaf Gas Exchange, Growth, Grain Yield, and Water Use Efficiency under Irrigation Regimes for Two Maize Hybrids," Agriculture, MDPI, vol. 10(9), pages 1-16, August.
    12. Katuwal, Krishna B. & Cho, Youngkoo & Singh, Sukhbir & Angadi, Sangamesh V. & Begna, Sultan & Stamm, Michael, 2020. "Soil water extraction pattern and water use efficiency of spring canola under growth-stage-based irrigation management," Agricultural Water Management, Elsevier, vol. 239(C).
    13. Lo, Tsz Him & Rudnick, Daran R. & Burr, Charles A. & Stockton, Matthew C. & Werle, Rodrigo, 2019. "Approaches to evaluating grower irrigation and fertilizer nitrogen amount and timing," Agricultural Water Management, Elsevier, vol. 213(C), pages 693-706.
    14. Sezen, S. Metin & Yucel, Seral & Tekin, Servet & Yıldız, Mehmet, 2019. "Determination of optimum irrigation and effect of deficit irrigation strategies on yield and disease rate of peanut irrigated with drip system in Eastern Mediterranean," Agricultural Water Management, Elsevier, vol. 221(C), pages 211-219.
    15. Munyasya, Alex Ndolo & Koskei, Kiprotich & Zhou, Rui & Liu, Shu-Tong & Indoshi, Sylvia Ngaira & Wang, Wei & Zhang, Xu-Cheng & Cheruiyot, Wesly Kiprotich & Mburu, David Mwehia & Nyende, Aggrey Bernard , 2022. "Integrated on-site & off-site rainwater-harvesting system boosts rainfed maize production for better adaptation to climate change," Agricultural Water Management, Elsevier, vol. 269(C).
    16. Mohtashami, Raham & Movahhedi Dehnavi, Mohsen & Balouchi, Hamidreza & Faraji, Hooshang, 2020. "Improving yield, oil content and water productivity of dryland canola by supplementary irrigation and selenium spraying," Agricultural Water Management, Elsevier, vol. 232(C).
    17. Bhattarai, Bishwoyog & Singh, Sukhbir & Angadi, Sangamesh V. & Begna, Sultan & Saini, Rupinder & Auld, Dick, 2020. "Spring safflower water use patterns in response to preseason and in-season irrigation applications," Agricultural Water Management, Elsevier, vol. 228(C).
    18. Hou, Chenli & Tian, Delong & Xu, Bing & Ren, Jie & Hao, Lei & Chen, Ning & Li, Xianyue, 2021. "Use of the stable oxygen isotope method to evaluate the difference in water consumption and utilization strategy between alfalfa and maize fields in an arid shallow groundwater area," Agricultural Water Management, Elsevier, vol. 256(C).
    19. Wang, Feng & Xiao, Junfu & Ming, Bo & Xie, Ruizhi & Wang, Keru & Hou, Peng & Liu, Guangzhou & Zhang, Guoqiang & Chen, Jianglu & Liu, Wanmao & Yang, Yunshan & Qin, Anzhen & Li, Shaokun, 2021. "Grain yields and evapotranspiration dynamics of drip-irrigated maize under high plant density across arid to semi-humid climates," Agricultural Water Management, Elsevier, vol. 247(C).
    20. Suat Irmak & Ali T. Mohammed & William Kranz & C.D. Yonts & Simon van Donk, 2020. "Irrigation-Yield Production Functions and Irrigation Water Use Efficiency Response of Drought-Tolerant and Non-Drought-Tolerant Maize Hybrids under Different Irrigation Levels, Population Densities, a," Sustainability, MDPI, vol. 12(1), pages 1-26, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Comas, Louise H. & Trout, Thomas J. & DeJonge, Kendall C. & Zhang, Huihui & Gleason, Sean M., 2019. "Water productivity under strategic growth stage-based deficit irrigation in maize," Agricultural Water Management, Elsevier, vol. 212(C), pages 433-440.
    2. Gheysari, Mahdi & Sadeghi, Sayed-Hossein & Loescher, Henry W. & Amiri, Samia & Zareian, Mohammad Javad & Majidi, Mohammad M. & Asgarinia, Parvaneh & Payero, Jose O., 2017. "Comparison of deficit irrigation management strategies on root, plant growth and biomass productivity of silage maize," Agricultural Water Management, Elsevier, vol. 182(C), pages 126-138.
    3. Motazedian, Azam & Kazemeini, Seyed Abdolreza & Bahrani, Mohammad Jafar, 2019. "Sweet corn growth and GrainYield as influenced by irrigation and wheat residue management," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    4. Folberth, Christian & Yang, Hong & Gaiser, Thomas & Abbaspour, Karim C. & Schulin, Rainer, 2013. "Modeling maize yield responses to improvement in nutrient, water and cultivar inputs in sub-Saharan Africa," Agricultural Systems, Elsevier, vol. 119(C), pages 22-34.
    5. Ma, Shou-Chen & Zhang, Wei-Qiang & Duan, Ai-Wang & Wang, Tong-Chao, 2019. "Effects of controlling soil moisture regime based on root-sourced signal characteristics on yield formation and water use efficiency of winter wheat," Agricultural Water Management, Elsevier, vol. 221(C), pages 486-492.
    6. Manning, Dale T. & Lurbé, Salvador & Comas, Louise H. & Trout, Thomas J. & Flynn, Nora & Fonte, Steven J., 2018. "Economic viability of deficit irrigation in the Western US," Agricultural Water Management, Elsevier, vol. 196(C), pages 114-123.
    7. Zhou, Shiwei & Hu, Xiaotao & Ran, Hui & Wang, Wenè & Hansen, Neil & Cui, Ningbo, 2020. "Optimization of irrigation and nitrogen fertilizer management for spring maize in northwestern China using RZWQM2," Agricultural Water Management, Elsevier, vol. 240(C).
    8. Greaves, Geneille E. & Wang, Yu-Min, 2017. "Effect of regulated deficit irrigation scheduling on water use of corn in southern Taiwan tropical environment," Agricultural Water Management, Elsevier, vol. 188(C), pages 115-125.
    9. Kresović, Branka & Tapanarova, Angelina & Tomić, Zorica & Životić, Ljubomir & Vujović, Dragan & Sredojević, Zorica & Gajić, Boško, 2016. "Grain yield and water use efficiency of maize as influenced by different irrigation regimes through sprinkler irrigation under temperate climate," Agricultural Water Management, Elsevier, vol. 169(C), pages 34-43.
    10. Srivastava, R.K. & Panda, R.K. & Chakraborty, A. & Halder, D., 2018. "Comparison of actual evapotranspiration of irrigated maize in a sub-humid region using four different canopy resistance based approaches," Agricultural Water Management, Elsevier, vol. 202(C), pages 156-165.
    11. Farré, I. & Faci, J.-M., 2009. "Deficit irrigation in maize for reducing agricultural water use in a Mediterranean environment," Agricultural Water Management, Elsevier, vol. 96(3), pages 383-394, March.
    12. Muhammad Irfan Ahmad & Adnan Noor Shah & Jianqiang Sun & Youhong Song, 2020. "Comparative Study on Leaf Gas Exchange, Growth, Grain Yield, and Water Use Efficiency under Irrigation Regimes for Two Maize Hybrids," Agriculture, MDPI, vol. 10(9), pages 1-16, August.
    13. Yuan, Chengfu & Feng, Shaoyuan & Huo, Zailin & Ji, Quanyi, 2019. "Effects of deficit irrigation with saline water on soil water-salt distribution and water use efficiency of maize for seed production in arid Northwest China," Agricultural Water Management, Elsevier, vol. 212(C), pages 424-432.
    14. Suat Irmak & Ali T. Mohammed & William Kranz & C.D. Yonts & Simon van Donk, 2020. "Irrigation-Yield Production Functions and Irrigation Water Use Efficiency Response of Drought-Tolerant and Non-Drought-Tolerant Maize Hybrids under Different Irrigation Levels, Population Densities, a," Sustainability, MDPI, vol. 12(1), pages 1-26, January.
    15. Attia, Ahmed & El-Hendawy, Salah & Al-Suhaibani, Nasser & Alotaibi, Majed & Tahir, Muhammad Usman & Kamal, Khaled Y., 2021. "Evaluating deficit irrigation scheduling strategies to improve yield and water productivity of maize in arid environment using simulation," Agricultural Water Management, Elsevier, vol. 249(C).
    16. Zou, Haiyang & Fan, Junliang & Zhang, Fucang & Xiang, Youzhen & Wu, Lifeng & Yan, Shicheng, 2020. "Optimization of drip irrigation and fertilization regimes for high grain yield, crop water productivity and economic benefits of spring maize in Northwest China," Agricultural Water Management, Elsevier, vol. 230(C).
    17. Gheysari, Mahdi & Pirnajmedin, Fatemeh & Movahedrad, Hamid & Majidi, Mohammad Mahdi & Zareian, Mohammad Javad, 2021. "Crop yield and irrigation water productivity of silage maize under two water stress strategies in semi-arid environment: Two different pot and field experiments," Agricultural Water Management, Elsevier, vol. 255(C).
    18. Neal, J.S. & Fulkerson, W.J. & Hacker, R.B., 2011. "Differences in water use efficiency among annual forages used by the dairy industry under optimum and deficit irrigation," Agricultural Water Management, Elsevier, vol. 98(5), pages 759-774, March.
    19. Ignacio Lorite & Margarita García-Vila & María-Ascensión Carmona & Cristina Santos & María-Auxiliadora Soriano, 2012. "Assessment of the Irrigation Advisory Services’ Recommendations and Farmers’ Irrigation Management: A Case Study in Southern Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2397-2419, June.
    20. Rudnick, D.R. & Irmak, S. & Djaman, K. & Sharma, V., 2017. "Impact of irrigation and nitrogen fertilizer rate on soil water trends and maize evapotranspiration during the vegetative and reproductive periods," Agricultural Water Management, Elsevier, vol. 191(C), pages 77-84.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:155:y:2015:i:c:p:11-21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.