IDEAS home Printed from https://ideas.repec.org/a/ers/ijebaa/vixy2021i2p277-292.html
   My bibliography  Save this article

Application and Impact of New Technologies in the Supply Chain Management During COVID-19 Pandemic: A Systematic Literature Review

Author

Listed:
  • Muhammad Rahies Khan
  • Amir Manzoor

Abstract

Purpose: The purpose of this study is to examine the application of emerging technologies during the COVID-19 pandemic and their impact on supply chain management. Design/Methodology/approach: A systematic literature review was conducted to identify the application and impact of new technologies on supply chain management. Findings: The findings revealed that blockchain technology, IoT, artificial intelligence, big data analytics, cloud computing, 5G and smartphone application, and the use of robots and drones are the key technologies used during COVID-19 in supply chain management, and they showed a substantial impact on the supply chain resilience, agility, and adaptability. Key barriers include higher investment costs, lack of government regulations and support, and deficiency of skilled and technical human resources faced during these technologies' implementation. Practical Implications: This study evaluated the systematic review through the google scholar search engine and only adopted peer-reviewed scholarly journals, conference proceedings, and opinion papers. The study provides valuable insight to supply chain officials, policymakers, and governments. The emerging technologies have the crucial potential to resolve the supply chain disruptions, if they are addressed seriously. Originality/ value: This study provides social implications by providing insight regarding the improved standards of living. This study is the first to address emerging technologies in supply chain management during COVID-19.

Suggested Citation

  • Muhammad Rahies Khan & Amir Manzoor, 2021. "Application and Impact of New Technologies in the Supply Chain Management During COVID-19 Pandemic: A Systematic Literature Review," International Journal of Economics & Business Administration (IJEBA), International Journal of Economics & Business Administration (IJEBA), vol. 0(2), pages 277-292.
  • Handle: RePEc:ers:ijebaa:v:ix:y:2021:i:2:p:277-292
    as

    Download full text from publisher

    File URL: https://www.ijeba.com/journal/703/download
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dmitry Ivanov, 2018. "Supply Chain Risk Management: Bullwhip Effect and Ripple Effect," International Series in Operations Research & Management Science, in: Structural Dynamics and Resilience in Supply Chain Risk Management, chapter 0, pages 19-44, Springer.
    2. Hamed Mamani & Stephen E. Chick & David Simchi-Levi, 2013. "A Game-Theoretic Model of International Influenza Vaccination Coordination," Management Science, INFORMS, vol. 59(7), pages 1650-1670, July.
    3. Govindan, Kannan & Mina, Hassan & Alavi, Behrouz, 2020. "A decision support system for demand management in healthcare supply chains considering the epidemic outbreaks: A case study of coronavirus disease 2019 (COVID-19)," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
    4. Büyüktahtakın, İ. Esra & des-Bordes, Emmanuel & Kıbış, Eyyüb Y., 2018. "A new epidemics–logistics model: Insights into controlling the Ebola virus disease in West Africa," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1046-1063.
    5. Alexandre Dolgui & Dmitry Ivanov & Boris Sokolov, 2018. "Ripple effect in the supply chain: an analysis and recent literature," International Journal of Production Research, Taylor & Francis Journals, vol. 56(1-2), pages 414-430, January.
    6. Landon Kleis & Paul Chwelos & Ronald V. Ramirez & Iain Cockburn, 2012. "Information Technology and Intangible Output: The Impact of IT Investment on Innovation Productivity," Information Systems Research, INFORMS, vol. 23(1), pages 42-59, March.
    7. Dmitry Ivanov & Boris Sokolov, 2019. "Simultaneous structural–operational control of supply chain dynamics and resilience," Annals of Operations Research, Springer, vol. 283(1), pages 1191-1210, December.
    8. Jelena Končar & Aleksandar Grubor & Radenko Marić & Sonja Vučenović & Goran Vukmirović, 2020. "Setbacks to IoT Implementation in the Function of FMCG Supply Chain Sustainability during COVID-19 Pandemic," Sustainability, MDPI, vol. 12(18), pages 1-21, September.
    9. Hoda Parvin & Shervin Beygi & Jonathan E. Helm & Peter S. Larson & Mark P. Van Oyen, 2018. "Distribution of Medication Considering Information, Transshipment, and Clustering: Malaria in Malawi," Production and Operations Management, Production and Operations Management Society, vol. 27(4), pages 774-797, April.
    10. Robert J. David & Shin‐Kap Han, 2004. "A systematic assessment of the empirical support for transaction cost economics," Strategic Management Journal, Wiley Blackwell, vol. 25(1), pages 39-58, January.
    11. Riccardo Aldrighetti & Ilenia Zennaro & Serena Finco & Daria Battini, 2019. "Healthcare Supply Chain Simulation with Disruption Considerations: A Case Study from Northern Italy," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 20(1), pages 81-102, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maciel M. Queiroz & Dmitry Ivanov & Alexandre Dolgui & Samuel Fosso Wamba, 2022. "Impacts of epidemic outbreaks on supply chains: mapping a research agenda amid the COVID-19 pandemic through a structured literature review," Annals of Operations Research, Springer, vol. 319(1), pages 1159-1196, December.
    2. Muhammad Umar Farooq & Amjad Hussain & Tariq Masood & Muhammad Salman Habib, 2021. "Supply Chain Operations Management in Pandemics: A State-of-the-Art Review Inspired by COVID-19," Sustainability, MDPI, vol. 13(5), pages 1-33, February.
    3. Ivanov, Dmitry, 2020. "Predicting the impacts of epidemic outbreaks on global supply chains: A simulation-based analysis on the coronavirus outbreak (COVID-19/SARS-CoV-2) case," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    4. Aarti Singh & Ratri Parida, 2022. "Decision-Making Models for Healthcare Supply Chain Disruptions: Review and Insights for Post-pandemic Era," International Journal of Global Business and Competitiveness, Springer, vol. 17(2), pages 130-141, December.
    5. Chowdhury, Priyabrata & Paul, Sanjoy Kumar & Kaisar, Shahriar & Moktadir, Md. Abdul, 2021. "COVID-19 pandemic related supply chain studies: A systematic review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 148(C).
    6. Brusset, Xavier & Ivanov, Dmitry & Jebali, Aida & La Torre, Davide & Repetto, Marco, 2023. "A dynamic approach to supply chain reconfiguration and ripple effect analysis in an epidemic," International Journal of Production Economics, Elsevier, vol. 263(C).
    7. Choudhury, Nishat Alam & Ramkumar, M. & Schoenherr, Tobias & Singh, Shalabh, 2023. "The role of operations and supply chain management during epidemics and pandemics: Potential and future research opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    8. Dmitry Ivanov, 2022. "Viable supply chain model: integrating agility, resilience and sustainability perspectives—lessons from and thinking beyond the COVID-19 pandemic," Annals of Operations Research, Springer, vol. 319(1), pages 1411-1431, December.
    9. Seyedmohsen Hosseini & Dmitry Ivanov, 2022. "A new resilience measure for supply networks with the ripple effect considerations: a Bayesian network approach," Annals of Operations Research, Springer, vol. 319(1), pages 581-607, December.
    10. Ekinci, Esra & Mangla, Sachin Kumar & Kazancoglu, Yigit & Sarma, P.R.S. & Sezer, Muruvvet Deniz & Ozbiltekin-Pala, Melisa, 2022. "Resilience and complexity measurement for energy efficient global supply chains in disruptive events," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
    11. Burgos, Diana & Ivanov, Dmitry, 2021. "Food retail supply chain resilience and the COVID-19 pandemic: A digital twin-based impact analysis and improvement directions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    12. Li, Yuhong & Zobel, Christopher W., 2020. "Exploring supply chain network resilience in the presence of the ripple effect," International Journal of Production Economics, Elsevier, vol. 228(C).
    13. Hammami, Ramzi & Salman, Sinan & Khouja, Moutaz & Nouira, Imen & Alaswad, Suzan, 2023. "Government strategies to secure the supply of medical products in pandemic times," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1364-1387.
    14. Xiaoyan Xu & Suresh P. Sethi & Sai‐Ho Chung & Tsan‐Ming Choi, 2023. "Reforming global supply chain management under pandemics: The GREAT‐3Rs framework," Production and Operations Management, Production and Operations Management Society, vol. 32(2), pages 524-546, February.
    15. Alexander Pavlov & Dmitry Ivanov & Frank Werner & Alexandre Dolgui & Boris Sokolov, 2022. "Integrated detection of disruption scenarios, the ripple effect dispersal and recovery paths in supply chains," Annals of Operations Research, Springer, vol. 319(1), pages 609-631, December.
    16. Keyong Lin & S. Nurmaya Musa & Hwa Jen Yap, 2022. "Vehicle Routing Optimization for Pandemic Containment: A Systematic Review on Applications and Solution Approaches," Sustainability, MDPI, vol. 14(4), pages 1-27, February.
    17. Gupta, Himanshu & Yadav, Avinash Kumar & Kusi-Sarpong, Simonov & Khan, Sharfuddin Ahmed & Sharma, Shashi Chandra, 2022. "Strategies to overcome barriers to innovative digitalisation technologies for supply chain logistics resilience during pandemic," Technology in Society, Elsevier, vol. 69(C).
    18. Choi, Tsan-Ming & Shi, Xiutian, 2022. "Reducing supply risks by supply guarantee deposit payments in the fashion industry in the “new normal after COVID-19”," Omega, Elsevier, vol. 109(C).
    19. Fadaki, Masih & Abareshi, Ahmad & Far, Shaghayegh Maleki & Lee, Paul Tae-Woo, 2022. "Multi-period vaccine allocation model in a pandemic: A case study of COVID-19 in Australia," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    20. Salarpour, Mojtaba & Nagurney, Anna, 2021. "A multicountry, multicommodity stochastic game theory network model of competition for medical supplies inspired by the Covid-19 pandemic," International Journal of Production Economics, Elsevier, vol. 236(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ers:ijebaa:v:ix:y:2021:i:2:p:277-292. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marios Agiomavritis (email available below). General contact details of provider: https://ijeba.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.