IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v28y2013icp103-113.html
   My bibliography  Save this article

A method to assess multi-modal Hazmat transport security vulnerabilities: Hazmat transport SVA

Author

Listed:
  • Reniers, G.L.L.
  • Dullaert, W.

Abstract

The suggested Hazmat transport Security Vulnerability Assessment (SVA) methodology presents a user-friendly approach to determine relative security risk levels of the different modes of hazardous freight transport (i.e., road, railway, inland waterways and pipeline transportation). First, transport routes are divided into smaller route segments. Second, likelihood scores of security-related accidents in which dangerous freight is involved and possibly causing fatalities in the surrounding population, are determined per route segment. Third, the consequences of accident scenarios (using reference products and spatial plans) are calculated in terms of the number of people within the 1% lethality distance of the accident center. Fourth, using these likelihood scores and consequence figures, transport route security risk levels are determined. Fifth, transshipment risks are considered for determining the final transport route security risk levels. This leads to a multi-modal user-friendly security threat assessment tool which can be used by policy makers as well as by industrialists (shippers or Logistics Service Providers). The generic method allows for comparing the security risk levels of the different route segments and routes of transportation of hazardous goods and for taking countermeasures from a uni-modal as well as from a multi-modal perspective.

Suggested Citation

  • Reniers, G.L.L. & Dullaert, W., 2013. "A method to assess multi-modal Hazmat transport security vulnerabilities: Hazmat transport SVA," Transport Policy, Elsevier, vol. 28(C), pages 103-113.
  • Handle: RePEc:eee:trapol:v:28:y:2013:i:c:p:103-113
    DOI: 10.1016/j.tranpol.2012.05.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X12000728
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2012.05.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Verma, Manish & Verter, Vedat, 2010. "A lead-time based approach for planning rail-truck intermodal transportation of dangerous goods," European Journal of Operational Research, Elsevier, vol. 202(3), pages 696-706, May.
    2. Godoy, S.M. & Santa Cruz, A.S.M. & Scenna, N.J., 2007. "STRRAP system—A software for hazardous materials risk assessment and safe distances calculation," Reliability Engineering and System Safety, Elsevier, vol. 92(7), pages 847-857.
    3. Thomas, Barrett W. & White III, Chelsea C., 2007. "The dynamic shortest path problem with anticipation," European Journal of Operational Research, Elsevier, vol. 176(2), pages 836-854, January.
    4. Patterson, Zachary & Ewing, Gordon O. & Haider, Murtaza, 2010. "How different is carrier choice for third party logistics companies?," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(5), pages 764-774, September.
    5. Cullinane, Kevin & Toy, Neal, 2000. "Identifying influential attributes in freight route/mode choice decisions: a content analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 36(1), pages 41-53, March.
    6. Michael Bell, 2006. "Mixed Route Strategies for the Risk-Averse Shipment of Hazardous Materials," Networks and Spatial Economics, Springer, vol. 6(3), pages 253-265, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ditta, A. & Figueroa, O. & Galindo, G. & Yie-Pinedo, R., 2019. "A review on research in transportation of hazardous materials," Socio-Economic Planning Sciences, Elsevier, vol. 68(C).
    2. Didier Soto & Florent Renard, 2015. "New prospects for the spatialisation of technological risks by combining hazard and the vulnerability of assets," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1531-1548, December.
    3. Mahmoudabadi, Abbas & Seyedhosseini, Seyed Mohammad, 2014. "Solving Hazmat Routing Problem in chaotic damage severity network under emergency environment," Transport Policy, Elsevier, vol. 36(C), pages 34-45.
    4. Shahrzad Faghih-Roohi & Yew-Soon Ong & Sobhan Asian & Allan N. Zhang, 2016. "Dynamic conditional value-at-risk model for routing and scheduling of hazardous material transportation networks," Annals of Operations Research, Springer, vol. 247(2), pages 715-734, December.
    5. Elifcan Göçmen & Rızvan Erol, 2018. "The Problem of Sustainable Intermodal Transportation: A Case Study of an International Logistics Company, Turkey," Sustainability, MDPI, vol. 10(11), pages 1-16, November.
    6. Shuxia Li & Yuedan Zu & Huimin Fang & Liping Liu & Tijun Fan, 2021. "Design Optimization of a HAZMAT Multimodal Hub-and-Spoke Network with Detour," IJERPH, MDPI, vol. 18(23), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ralf Elbert & Lowis Seikowsky, 2017. "The influences of behavioral biases, barriers and facilitators on the willingness of forwarders’ decision makers to modal shift from unimodal road freight transport to intermodal road–rail freight tra," Journal of Business Economics, Springer, vol. 87(8), pages 1083-1123, November.
    2. Liping Liu & Jiaming Li & Lei Zhou & Tijun Fan & Shuxia Li, 2021. "Research on Route Optimization of Hazardous Materials Transportation Considering Risk Equity," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    3. Dullaert, Wout & Zamparini, Luca, 2013. "The impact of lead time reliability in freight transport: A logistics assessment of transport economics findings," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 190-200.
    4. Fang, Kan & Ke, Ginger Y. & Verma, Manish, 2017. "A routing and scheduling approach to rail transportation of hazardous materials with demand due dates," European Journal of Operational Research, Elsevier, vol. 261(1), pages 154-168.
    5. Li, Qinglin & Rezaei, Jafar & Tavasszy, Lori & Wiegmans, Bart & Guo, Jingwei & Tang, Yinying & Peng, Qiyuan, 2020. "Customers’ preferences for freight service attributes of China Railway Express," Transportation Research Part A: Policy and Practice, Elsevier, vol. 142(C), pages 225-236.
    6. Sinem Tokcaer & Özgür Özpeynirci, 2018. "A bi-objective multimodal transportation planning problem with an application to a petrochemical ethylene manufacturer," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 20(1), pages 72-88, March.
    7. Mohri, Seyed Sina & Mohammadi, Mehrdad & Gendreau, Michel & Pirayesh, Amir & Ghasemaghaei, Ali & Salehi, Vahid, 2022. "Hazardous material transportation problems: A comprehensive overview of models and solution approaches," European Journal of Operational Research, Elsevier, vol. 302(1), pages 1-38.
    8. Arturo E. Pérez Rivera & Martijn R. K. Mes, 2019. "Integrated scheduling of drayage and long-haul operations in synchromodal transport," Flexible Services and Manufacturing Journal, Springer, vol. 31(3), pages 763-806, September.
    9. Timothy M. Sweda & Irina S. Dolinskaya & Diego Klabjan, 2017. "Adaptive Routing and Recharging Policies for Electric Vehicles," Transportation Science, INFORMS, vol. 51(4), pages 1326-1348, November.
    10. Morales-Fusco, Pau & Saurí, Sergi & Lago, Alejandro, 2012. "Potential freight distribution improvements using motorways of the sea," Journal of Transport Geography, Elsevier, vol. 24(C), pages 1-11.
    11. Su-Han Woo & Stephen Pettit & Anthony Beresford & Dong-Wook Kwak, 2012. "Seaport Research: A Decadal Analysis of Trends and Themes Since the 1980s," Transport Reviews, Taylor & Francis Journals, vol. 32(3), pages 351-377, January.
    12. Elifcan Göçmen & Rızvan Erol, 2018. "The Problem of Sustainable Intermodal Transportation: A Case Study of an International Logistics Company, Turkey," Sustainability, MDPI, vol. 10(11), pages 1-16, November.
    13. Szeto, W.Y. & Farahani, R.Z. & Sumalee, Agachai, 2017. "Link-based multi-class hazmat routing-scheduling problem: A multiple demon approach," European Journal of Operational Research, Elsevier, vol. 261(1), pages 337-354.
    14. Rahman, Ashrafur & Fiondella, Lance & Lownes, Nicholas E., 2014. "A Bi-Objective Approach to Evaluate Highway Routing and Regulatory Strategies for Hazardous Materials Transportation," Journal of the Transportation Research Forum, Transportation Research Forum, vol. 53(1).
    15. Reis, Vasco, 2014. "Analysis of mode choice variables in short-distance intermodal freight transport using an agent-based model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 61(C), pages 100-120.
    16. Zajac, Sandra & Huber, Sandra, 2021. "Objectives and methods in multi-objective routing problems: a survey and classification scheme," European Journal of Operational Research, Elsevier, vol. 290(1), pages 1-25.
    17. Christian Wankmüller & Gerald Reiner, 2020. "Coordination, cooperation and collaboration in relief supply chain management," Journal of Business Economics, Springer, vol. 90(2), pages 239-276, March.
    18. Azadian, Farshid & Murat, Alper E. & Chinnam, Ratna Babu, 2012. "Dynamic routing of time-sensitive air cargo using real-time information," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 355-372.
    19. Nima Haghighi & S. Kiavash Fayyaz & Xiaoyue Cathy Liu & Tony H. Grubesic & Ran Wei, 2018. "A Multi-Scenario Probabilistic Simulation Approach for Critical Transportation Network Risk Assessment," Networks and Spatial Economics, Springer, vol. 18(1), pages 181-203, March.
    20. Zvi Drezner & George Wesolowsky, 2014. "Covering Part of a Planar Network," Networks and Spatial Economics, Springer, vol. 14(3), pages 629-646, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:28:y:2013:i:c:p:103-113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.