IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v79y2015icp164-177.html
   My bibliography  Save this article

Variable neighborhood search heuristic for storage location assignment and storage/retrieval scheduling under shared storage in multi-shuttle automated storage/retrieval systems

Author

Listed:
  • Yang, Peng
  • Miao, Lixin
  • Xue, Zhaojie
  • Ye, Bin

Abstract

This paper examines the joint optimization of storage location assignment and storage/retrieval scheduling in multi-shuttle automated storage/retrieval systems (AS/RSs) under shared storage, in which the reuse of empty location yielded by retrieval operation is allowed. From the view of analytical model, the advantage of operational mode under shared storage is verified. A variable neighborhood search (VNS) algorithm is developed to solve the large-sized problems. Various numerical experiments are conducted to evaluate the performance of the proposed algorithm and investigate the impact of different parameters on computational efficiency.

Suggested Citation

  • Yang, Peng & Miao, Lixin & Xue, Zhaojie & Ye, Bin, 2015. "Variable neighborhood search heuristic for storage location assignment and storage/retrieval scheduling under shared storage in multi-shuttle automated storage/retrieval systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 79(C), pages 164-177.
  • Handle: RePEc:eee:transe:v:79:y:2015:i:c:p:164-177
    DOI: 10.1016/j.tre.2015.04.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554515000988
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2015.04.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sarker, Bhaba R. & Babu, P. Sobhan, 1995. "Travel time models in automated storage/retrieval systems: A critical review," International Journal of Production Economics, Elsevier, vol. 40(2-3), pages 173-184, August.
    2. de Koster, Rene & Le-Duc, Tho & Roodbergen, Kees Jan, 2007. "Design and control of warehouse order picking: A literature review," European Journal of Operational Research, Elsevier, vol. 182(2), pages 481-501, October.
    3. Hansen, Pierre & Mladenovic, Nenad, 2001. "Variable neighborhood search: Principles and applications," European Journal of Operational Research, Elsevier, vol. 130(3), pages 449-467, May.
    4. Gue, Kevin R. & Ivanović, Goran & Meller, Russell D., 2012. "A unit-load warehouse with multiple pickup and deposit points and non-traditional aisles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(4), pages 795-806.
    5. Schleyer, Marc & Gue, Kevin, 2012. "Throughput time distribution analysis for a one-block warehouse," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(3), pages 652-666.
    6. Roodbergen, Kees Jan & Vis, Iris F.A., 2009. "A survey of literature on automated storage and retrieval systems," European Journal of Operational Research, Elsevier, vol. 194(2), pages 343-362, April.
    7. Pohl, Letitia M. & Meller, Russell D. & Gue, Kevin R., 2009. "An analysis of dual-command operations in common warehouse designs," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(3), pages 367-379, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boysen, Nils & Stephan, Konrad, 2016. "A survey on single crane scheduling in automated storage/retrieval systems," European Journal of Operational Research, Elsevier, vol. 254(3), pages 691-704.
    2. Chen, Gang & Feng, Haolin & Luo, Kaiyi & Tang, Yanli, 2021. "Retrieval-oriented storage relocation optimization of an automated storage and retrieval system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    3. Chen, Ran & Yang, Jingjing & Yu, Yugang & Guo, Xiaolong, 2023. "Retrieval request scheduling in a shuttle-based storage and retrieval system with two lifts," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 174(C).
    4. Jaeseok Huh & Moon-jung Chae & Jonghun Park & Kwanho Kim, 2019. "A case-based reasoning approach to fast optimization of travel routes for large-scale AS/RSs," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1765-1778, April.
    5. Li, Xiaowei & Hua, Guowei & Huang, Anqiang & Sheu, Jiuh-Biing & Cheng, T.C.E. & Huang, Fengquan, 2020. "Storage assignment policy with awareness of energy consumption in the Kiva mobile fulfilment system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    6. Polten, Lukas & Emde, Simon, 2022. "Multi-shuttle crane scheduling in automated storage and retrieval systems," European Journal of Operational Research, Elsevier, vol. 302(3), pages 892-908.
    7. Zhang, Zizhen & Qin, Hu & Wang, Kai & He, Huang & Liu, Tian, 2017. "Manpower allocation and vehicle routing problem in non-emergency ambulance transfer service," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 45-59.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Çağla Cergibozan & A. Serdar Tasan, 2019. "Order batching operations: an overview of classification, solution techniques, and future research," Journal of Intelligent Manufacturing, Springer, vol. 30(1), pages 335-349, January.
    2. van Gils, Teun & Caris, An & Ramaekers, Katrien & Braekers, Kris & de Koster, René B.M., 2019. "Designing efficient order picking systems: The effect of real-life features on the relationship among planning problems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 47-73.
    3. Öztürkoğlu, Ö. & Gue, K.R. & Meller, R.D., 2014. "A constructive aisle design model for unit-load warehouses with multiple pickup and deposit points," European Journal of Operational Research, Elsevier, vol. 236(1), pages 382-394.
    4. Öztürkoğlu, Ömer & Hoser, Deniz, 2019. "A discrete cross aisle design model for order-picking warehouses," European Journal of Operational Research, Elsevier, vol. 275(2), pages 411-430.
    5. Liu, Tian & Gong, Yeming & De Koster, René B.M., 2018. "Travel time models for split-platform automated storage and retrieval systems," International Journal of Production Economics, Elsevier, vol. 197(C), pages 197-214.
    6. Krzysztof Dmytrow, 2020. "Impact of the Method of Criteria Normalisation on the Order Picking Route and Time," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 834-851.
    7. Polten, Lukas & Emde, Simon, 2022. "Multi-shuttle crane scheduling in automated storage and retrieval systems," European Journal of Operational Research, Elsevier, vol. 302(3), pages 892-908.
    8. Jiang, Min & Huang, George Q., 2022. "Intralogistics synchronization in robotic forward-reserve warehouses for e-commerce last-mile delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    9. Bortolini, Marco & Faccio, Maurizio & Ferrari, Emilio & Gamberi, Mauro & Pilati, Francesco, 2017. "Time and energy optimal unit-load assignment for automatic S/R warehouses," International Journal of Production Economics, Elsevier, vol. 190(C), pages 133-145.
    10. Chen, Ran & Yang, Jingjing & Yu, Yugang & Guo, Xiaolong, 2023. "Retrieval request scheduling in a shuttle-based storage and retrieval system with two lifts," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 174(C).
    11. Nicolas, Lenoble & Yannick, Frein & Ramzi, Hammami, 2018. "Order batching in an automated warehouse with several vertical lift modules: Optimization and experiments with real data," European Journal of Operational Research, Elsevier, vol. 267(3), pages 958-976.
    12. Azadeh, K. & de Koster, M.B.M. & Roy, D., 2017. "Robotized Warehouse Systems: Developments and Research Opportunities," ERIM Report Series Research in Management ERS-2017-009-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    13. Jiang, Min & Leung, K.H. & Lyu, Zhongyuan & Huang, George Q., 2020. "Picking-replenishment synchronization for robotic forward-reserve warehouses," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    14. Manuel Ostermeier & Andreas Holzapfel & Heinrich Kuhn & Daniel Schubert, 2022. "Integrated zone picking and vehicle routing operations with restricted intermediate storage," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(3), pages 795-832, September.
    15. Claeys, Dieter & Adan, Ivo & Boxma, Onno, 2016. "Stochastic bounds for order flow times in parts-to-picker warehouses with remotely located order-picking workstations," European Journal of Operational Research, Elsevier, vol. 254(3), pages 895-906.
    16. Marcus Ang & Yun Fong Lim & Melvyn Sim, 2012. "Robust Storage Assignment in Unit-Load Warehouses," Management Science, INFORMS, vol. 58(11), pages 2114-2130, November.
    17. Derhami, Shahab & Smith, Jeffrey S. & Gue, Kevin R., 2020. "A simulation-based optimization approach to design optimal layouts for block stacking warehouses," International Journal of Production Economics, Elsevier, vol. 223(C).
    18. Nils Boysen & David Füßler & Konrad Stephan, 2020. "See the light: Optimization of put‐to‐light order picking systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(1), pages 3-20, February.
    19. Yu, Y. & de Koster, M.B.M., 2009. "On the Suboptimality of Full Turnover-Based Storage," ERIM Report Series Research in Management ERS-2009-051-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    20. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," European Journal of Operational Research, Elsevier, vol. 277(2), pages 396-411.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:79:y:2015:i:c:p:164-177. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.