IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v74y2015icp63-80.html
   My bibliography  Save this article

Reprint of “Product architecture modularity implications for operations economy of green supply chains”

Author

Listed:
  • Kristianto, Yohanes
  • Helo, Petri

Abstract

The role of product architecture modularity is commonly in increasing product reusability and minimizing waste. This paper designs a decision support system to determine optimal product architecture modularity in closed loop supply chains. The objective is to investigate if remanufacturing and modular upgrading is appropriate at certain periods and in modules. The optimization model is tested under several production yield scenarios in order to determine manufacturing and remanufacturing capacity and production line scheduling under process yield uncertainty. The implications of product architecture modularity for operations economy of green supply chains are discussed in terms of their theoretical and managerial aspects.

Suggested Citation

  • Kristianto, Yohanes & Helo, Petri, 2015. "Reprint of “Product architecture modularity implications for operations economy of green supply chains”," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 74(C), pages 63-80.
  • Handle: RePEc:eee:transe:v:74:y:2015:i:c:p:63-80
    DOI: 10.1016/j.tre.2014.12.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554514002142
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2014.12.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lamothe, Jacques & Hadj-Hamou, Khaled & Aldanondo, Michel, 2006. "An optimization model for selecting a product family and designing its supply chain," European Journal of Operational Research, Elsevier, vol. 169(3), pages 1030-1047, March.
    2. Zhu, Qinghua & Sarkis, Joseph & Lai, Kee-hung, 2008. "Green supply chain management implications for "closing the loop"," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 44(1), pages 1-18, January.
    3. Guide, V. Daniel R. & Kraus, Mark E. & Srivastava, Rajesh, 1997. "Scheduling policies for remanufacturing," International Journal of Production Economics, Elsevier, vol. 48(2), pages 187-204, January.
    4. Yang, Guang-fen & Wang, Zhi-ping & Li, Xiao-qiang, 2009. "The optimization of the closed-loop supply chain network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(1), pages 16-28, January.
    5. Johnson, P. Fraser, 1998. "Managing value in reverse logistics systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 34(3), pages 217-227, September.
    6. Lee, Der-Horng & Dong, Meng, 2008. "A heuristic approach to logistics network design for end-of-lease computer products recovery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 44(3), pages 455-474, May.
    7. Kara, S. & Rugrungruang, F. & Kaebernick, H., 2007. "Simulation modelling of reverse logistics networks," International Journal of Production Economics, Elsevier, vol. 106(1), pages 61-69, March.
    8. Faiz A. Al-Khayyal & James E. Falk, 1983. "Jointly Constrained Biconvex Programming," Mathematics of Operations Research, INFORMS, vol. 8(2), pages 273-286, May.
    9. Fleischmann, Mortiz & Krikke, Hans Ronald & Dekker, Rommert & Flapper, Simme Douwe P., 2000. "A characterisation of logistics networks for product recovery," Omega, Elsevier, vol. 28(6), pages 653-666, December.
    10. Ellinger, Alexandeer E. & Daugherty, Patricia J. & Gustin, Craig M., 1997. "The relationship between integrated logistics and customer service," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 33(2), pages 129-138, June.
    11. Chen, Kejia & Ji, Ping, 2007. "A mixed integer programming model for advanced planning and scheduling (APS)," European Journal of Operational Research, Elsevier, vol. 181(1), pages 515-522, August.
    12. John Paul MacDuffie & Kannan Sethuraman & Marshall L. Fisher, 1996. "Product Variety and Manufacturing Performance: Evidence from the International Automotive Assembly Plant Study," Management Science, INFORMS, vol. 42(3), pages 350-369, March.
    13. Manu Goyal & Serguei Netessine, 2011. "Volume Flexibility, Product Flexibility, or Both: The Role of Demand Correlation and Product Substitution," Manufacturing & Service Operations Management, INFORMS, vol. 13(2), pages 180-193, March.
    14. Kenné, Jean-Pierre & Dejax, Pierre & Gharbi, Ali, 2012. "Production planning of a hybrid manufacturing–remanufacturing system under uncertainty within a closed-loop supply chain," International Journal of Production Economics, Elsevier, vol. 135(1), pages 81-93.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kristianto, Yohanes & Helo, Petri, 2014. "Product architecture modularity implications for operations economy of green supply chains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 128-145.
    2. Govindan, Kannan & Soleimani, Hamed & Kannan, Devika, 2015. "Reverse logistics and closed-loop supply chain: A comprehensive review to explore the future," European Journal of Operational Research, Elsevier, vol. 240(3), pages 603-626.
    3. Özceylan, Eren & Paksoy, Turan & Bektaş, Tolga, 2014. "Modeling and optimizing the integrated problem of closed-loop supply chain network design and disassembly line balancing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 142-164.
    4. Felix T.S. Chan & Nan Li & S.H. Chung & Mozafar Saadat, 2017. "Management of sustainable manufacturing systems-a review on mathematical problems," International Journal of Production Research, Taylor & Francis Journals, vol. 55(4), pages 1210-1225, February.
    5. Vahdani, Behnam & Tavakkoli-Moghaddam, Reza & Modarres, Mohammad & Baboli, Armand, 2012. "Reliable design of a forward/reverse logistics network under uncertainty: A robust-M/M/c queuing model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(6), pages 1152-1168.
    6. Agrawal, Saurabh & Singh, Rajesh K. & Murtaza, Qasim, 2015. "A literature review and perspectives in reverse logistics," Resources, Conservation & Recycling, Elsevier, vol. 97(C), pages 76-92.
    7. Schweiger, Katharina & Sahamie, Ramin, 2013. "A hybrid Tabu Search approach for the design of a paper recycling network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 50(C), pages 98-119.
    8. Rahman, Shams & Subramanian, Nachiappan, 2012. "Factors for implementing end-of-life computer recycling operations in reverse supply chains," International Journal of Production Economics, Elsevier, vol. 140(1), pages 239-248.
    9. Zhang, Abraham & Wang, Jason X. & Farooque, Muhammad & Wang, Yulan & Choi, Tsan-Ming, 2021. "Multi-dimensional circular supply chain management: A comparative review of the state-of-the-art practices and research," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    10. S. Maryam Masoumi & Nima Kazemi & Salwa Hanim Abdul-Rashid, 2019. "Sustainable Supply Chain Management in the Automotive Industry: A Process-Oriented Review," Sustainability, MDPI, vol. 11(14), pages 1-30, July.
    11. Chang, Xiangyun & Xia, Haiyang & Zhu, Huiyun & Fan, Tijun & Zhao, Hongqing, 2015. "Production decisions in a hybrid manufacturing–remanufacturing system with carbon cap and trade mechanism," International Journal of Production Economics, Elsevier, vol. 162(C), pages 160-173.
    12. Carolyn D. Egelman & Dennis Epple & Linda Argote & Erica R.H. Fuchs, 2013. "Learning by Doing in a Multi-Product Manufacturing Environment: Product Variety, Customizations, and Overlapping Product Generations," NBER Working Papers 19674, National Bureau of Economic Research, Inc.
    13. Zhichao Li & Jilin Huang, 2018. "How to Effectively Improve Pesticide Waste Governance: A Perspective of Reverse Logistics," Sustainability, MDPI, vol. 10(10), pages 1-19, October.
    14. Mohammad Fattahi & Kannan Govindan, 2017. "Integrated forward/reverse logistics network design under uncertainty with pricing for collection of used products," Annals of Operations Research, Springer, vol. 253(1), pages 193-225, June.
    15. Chen, Jen-Ming & Chang, Chia-I, 2012. "The co-opetitive strategy of a closed-loop supply chain with remanufacturing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(2), pages 387-400.
    16. Carolyn D. Egelman & Dennis Epple & Linda Argote & Erica R. H. Fuchs, 2017. "Learning by Doing in Multiproduct Manufacturing: Variety, Customizations, and Overlapping Product Generations," Management Science, INFORMS, vol. 63(2), pages 405-423, February.
    17. Azevedo, Susana G. & Carvalho, Helena & Cruz Machado, V., 2011. "The influence of green practices on supply chain performance: A case study approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 850-871.
    18. Sarkis, Joseph & Zhu, Qinghua & Lai, Kee-hung, 2011. "An organizational theoretic review of green supply chain management literature," International Journal of Production Economics, Elsevier, vol. 130(1), pages 1-15, March.
    19. Elia, Valerio & Gnoni, Maria Grazia, 2015. "Designing an effective closed loop system for pallet management," International Journal of Production Economics, Elsevier, vol. 170(PC), pages 730-740.
    20. Sabharwal, Srishti & Garg, Suresh, 2013. "Determining cost effectiveness index of remanufacturing: A graph theoretic approach," International Journal of Production Economics, Elsevier, vol. 144(2), pages 521-532.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:74:y:2015:i:c:p:63-80. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.