IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v161y2022ics1366554522000801.html
   My bibliography  Save this article

Timescales of delay propagation in airport networks

Author

Listed:
  • Wang, Yanjun
  • Li, Max Z.
  • Gopalakrishnan, Karthik
  • Liu, Tongdan

Abstract

Flight delays persist and spread in airport networks due to high interconnectivity in the air transportation infrastructure. How quickly delay propagates between two airports is determined by factors such as the number of flights between airports, the duration of the flight, presence of disruptions, and schedule buffers. Accurate estimation of the time for delay propagation can improve system predictability and reliability. However, noisy airport delay data, along with a lack of visibility into airline scheduling and disruption management strategies, result in a challenging estimation problem for such propagation timescales. We present an algorithm to estimate statistically significant time lags between airport delays from noisy, aggregate operational data. The algorithm uses sliding correlation windows to extract the airport pairs with stable delay lags. We apply our method to identify different timescales of interactions for US airport delays in 2017. Our analysis yields two main results: (1) The most stable lags between airport delays involve the Northeast airports; (2) The stable lags between two airports are negatively correlated to the scheduled flight times between the same two airports. These results regarding delay propagation speeds have potential implications for delay prediction models and airline schedule design.

Suggested Citation

  • Wang, Yanjun & Li, Max Z. & Gopalakrishnan, Karthik & Liu, Tongdan, 2022. "Timescales of delay propagation in airport networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
  • Handle: RePEc:eee:transe:v:161:y:2022:i:c:s1366554522000801
    DOI: 10.1016/j.tre.2022.102687
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554522000801
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2022.102687?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brueckner, Jan K. & Czerny, Achim I. & Gaggero, Alberto A., 2021. "Airline mitigation of propagated delays via schedule buffers: Theory and empirics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    2. Wu, Cheng-Lung & Law, Kristie, 2019. "Modelling the delay propagation effects of multiple resource connections in an airline network using a Bayesian network model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 62-77.
    3. Du, Wen-Bo & Zhang, Ming-Yuan & Zhang, Yu & Cao, Xian-Bin & Zhang, Jun, 2018. "Delay causality network in air transport systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 466-476.
    4. Amir Bashan & Ronny P. Bartsch & Jan. W. Kantelhardt & Shlomo Havlin & Plamen Ch. Ivanov, 2012. "Network physiology reveals relations between network topology and physiological function," Nature Communications, Nature, vol. 3(1), pages 1-9, January.
    5. Michael D. Peterson & Dimitris J. Bertsimas & Amedeo R. Odoni, 1995. "Decomposition Algorithms for Analyzing Transient Phenomena in Multiclass Queueing Networks in Air Transportation," Operations Research, INFORMS, vol. 43(6), pages 995-1011, December.
    6. Kim, Myeonghyeon & Park, Sunwook, 2021. "Airport and route classification by modelling flight delay propagation," Journal of Air Transport Management, Elsevier, vol. 93(C).
    7. Shervin AhmadBeygi & Amy Cohn & Marcial Lapp, 2010. "Decreasing airline delay propagation by re-allocating scheduled slack," IISE Transactions, Taylor & Francis Journals, vol. 42(7), pages 478-489.
    8. Kafle, Nabin & Zou, Bo, 2016. "Modeling flight delay propagation: A new analytical-econometric approach," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 520-542.
    9. Li, Qiang & Jing, Ranzhe, 2021. "Characterization of delay propagation in the air traffic network," Journal of Air Transport Management, Elsevier, vol. 94(C).
    10. Diana, Tony, 2009. "Do market-concentrated airports propagate more delays than less concentrated ones? A case study of selected U.S. airports," Journal of Air Transport Management, Elsevier, vol. 15(6), pages 280-286.
    11. Mazhar Arıkan & Vinayak Deshpande & Milind Sohoni, 2013. "Building Reliable Air-Travel Infrastructure Using Empirical Data and Stochastic Models of Airline Networks," Operations Research, INFORMS, vol. 61(1), pages 45-64, February.
    12. Michael D. Peterson & Dimitris J. Bertsimas & Amedeo R. Odoni, 1995. "Models and Algorithms for Transient Queueing Congestion at Airports," Management Science, INFORMS, vol. 41(8), pages 1279-1295, August.
    13. Niklas Boers & Bedartha Goswami & Aljoscha Rheinwalt & Bodo Bookhagen & Brian Hoskins & Jürgen Kurths, 2019. "Complex networks reveal global pattern of extreme-rainfall teleconnections," Nature, Nature, vol. 566(7744), pages 373-377, February.
    14. Chunzheng Wang & Minghua Hu & Lei Yang & Zheng Zhao, 2021. "Prediction of air traffic delays: An agent-based model introducing refined parameter estimation methods," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-22, April.
    15. Guo, Zhen & Hao, Mengyan & Yu, Bin & Yao, Baozhen, 2022. "Detecting delay propagation in regional air transport systems using convergent cross mapping and complex network theory," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Shenwen & Du, Wenbo & Liu, Runran & Cao, Xianbin, 2023. "Finding spatial and temporal features of delay propagation via multi-layer networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 614(C).
    2. Ziming Wang & Chaohao Liao & Xu Hang & Lishuai Li & Daniel Delahaye & Mark Hansen, 2022. "Distribution Prediction of Strategic Flight Delays via Machine Learning Methods," Sustainability, MDPI, vol. 14(22), pages 1-14, November.
    3. Tang, Zhixing & Huang, Shan & Zhu, Xinping & Pan, Weijun & Han, Songchen & Gong, Tingyu, 2023. "Research on the multilayer structure of flight delay in China air traffic network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brueckner, Jan K. & Czerny, Achim I. & Gaggero, Alberto A., 2022. "Airline delay propagation: A simple method for measuring its extent and determinants," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 55-71.
    2. Bombelli, Alessandro & Sallan, Jose Maria, 2023. "Analysis of the effect of extreme weather on the US domestic air network. A delay and cancellation propagation network approach," Journal of Transport Geography, Elsevier, vol. 107(C).
    3. Birolini, Sebastian & Jacquillat, Alexandre, 2023. "Day-ahead aircraft routing with data-driven primary delay predictions," European Journal of Operational Research, Elsevier, vol. 310(1), pages 379-396.
    4. Guo, Zhen & Hao, Mengyan & Yu, Bin & Yao, Baozhen, 2022. "Detecting delay propagation in regional air transport systems using convergent cross mapping and complex network theory," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    5. Chen, Shenwen & Du, Wenbo & Liu, Runran & Cao, Xianbin, 2023. "Finding spatial and temporal features of delay propagation via multi-layer networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 614(C).
    6. Tan, Xinlong & Jia, Rongwen & Yan, Jia & Wang, Kun & Bian, Lei, 2021. "An Exploratory analysis of flight delay propagation in China," Journal of Air Transport Management, Elsevier, vol. 92(C).
    7. Yu, Bin & Guo, Zhen & Asian, Sobhan & Wang, Huaizhu & Chen, Gang, 2019. "Flight delay prediction for commercial air transport: A deep learning approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 203-221.
    8. Sismanidou, Athina & Tarradellas, Joan & Suau-Sanchez, Pere, 2022. "The uneven geography of US air traffic delays: Quantifying the impact of connecting passengers on delay propagation," Journal of Transport Geography, Elsevier, vol. 98(C).
    9. Brueckner, Jan K. & Czerny, Achim I. & Gaggero, Alberto A., 2021. "Airline schedule buffers and flight delays: A discrete model," Economics of Transportation, Elsevier, vol. 26.
    10. Abdelghany, Ahmed & Guzhva, Vitaly S. & Abdelghany, Khaled, 2023. "The limitation of machine-learning based models in predicting airline flight block time," Journal of Air Transport Management, Elsevier, vol. 107(C).
    11. Kenan, Nabil & Jebali, Aida & Diabat, Ali, 2018. "The integrated aircraft routing problem with optional flights and delay considerations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 355-375.
    12. Brueckner, Jan K. & Czerny, Achim I. & Gaggero, Alberto A., 2021. "Airline mitigation of propagated delays via schedule buffers: Theory and empirics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    13. Calzada, Joan & Fageda, Xavier, 2023. "Airport dominance, route network design and flight delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
    14. Ren, Pan & Li, Lishuai, 2018. "Characterizing air traffic networks via large-scale aircraft tracking data: A comparison between China and the US networks," Journal of Air Transport Management, Elsevier, vol. 67(C), pages 181-196.
    15. Flötteröd, G. & Osorio, C., 2017. "Stochastic network link transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 180-209.
    16. Weiwei Wu & Haoyu Zhang & Tao Feng & Frank Witlox, 2019. "A Network Modelling Approach to Flight Delay Propagation: Some Empirical Evidence from China," Sustainability, MDPI, vol. 11(16), pages 1-16, August.
    17. Jingyi Qu & Shixing Wu & Jinjie Zhang, 2023. "Flight Delay Propagation Prediction Based on Deep Learning," Mathematics, MDPI, vol. 11(3), pages 1-24, January.
    18. Li, Qiang & Jing, Ranzhe, 2021. "Characterization of delay propagation in the air traffic network," Journal of Air Transport Management, Elsevier, vol. 94(C).
    19. Martina Zámková & Stanislav Rojík & Martin Prokop & Radek Stolín, 2022. "Factors Affecting the International Flight Delays and Their Impact on Airline Operation and Management and Passenger Compensations Fees in Air Transport Industry: Case Study of a Selected Airlines in ," Sustainability, MDPI, vol. 14(22), pages 1-16, November.
    20. Chen, Yun-Hsuan & Lin, Jen-Jia, 2021. "Determinants of flight delays at East Asian airports from an airport, route and network perspective," Journal of Air Transport Management, Elsevier, vol. 94(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:161:y:2022:i:c:s1366554522000801. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.