IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v142y2020ics1366554520307213.html
   My bibliography  Save this article

Integrating Dijkstra’s algorithm into deep inverse reinforcement learning for food delivery route planning

Author

Listed:
  • Liu, Shan
  • Jiang, Hai
  • Chen, Shuiping
  • Ye, Jing
  • He, Renqing
  • Sun, Zhizhao

Abstract

In China, rapid development of online food delivery brings massive orders, which relies heavily on deliverymen riding e-bikes. In practice, actual delivery routes of most orders are not the same as the system recommended routes, and the road network information for some areas is outdated or incomplete. In this research, we develop a deep inverse reinforcement learning (IRL) algorithm to capture deliverymen’s preferences from historical GPS trajectories and recommend their preferred routes. Considering the characteristics of food delivery routes, we employ Dijkstra’s algorithm instead of value iteration, to determine the current policy and compute the gradient of IRL. Moreover, we plan routes at the presence and absence of road network information, providing accurate navigation when road network information is unknown. Numerical experiments on real delivery trajectories provided by Meituan-Dianping Group show that our approach improves F1-scoredistance by 8.0% and 6.1% at the presence and absence of road network information, respectively.

Suggested Citation

  • Liu, Shan & Jiang, Hai & Chen, Shuiping & Ye, Jing & He, Renqing & Sun, Zhizhao, 2020. "Integrating Dijkstra’s algorithm into deep inverse reinforcement learning for food delivery route planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
  • Handle: RePEc:eee:transe:v:142:y:2020:i:c:s1366554520307213
    DOI: 10.1016/j.tre.2020.102070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554520307213
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2020.102070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Menghini, G. & Carrasco, N. & Schüssler, N. & Axhausen, K.W., 2010. "Route choice of cyclists in Zurich," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(9), pages 754-765, November.
    2. Yang, Lin & Kwan, Mei-Po & Pan, Xiaofang & Wan, Bo & Zhou, Shunping, 2017. "Scalable space-time trajectory cube for path-finding: A study using big taxi trajectory data," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 1-27.
    3. Broach, Joseph & Dill, Jennifer & Gliebe, John, 2012. "Where do cyclists ride? A route choice model developed with revealed preference GPS data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(10), pages 1730-1740.
    4. Fosgerau, Mogens & Frejinger, Emma & Karlstrom, Anders, 2013. "A link based network route choice model with unrestricted choice set," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 70-80.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Shan & Jiang, Hai, 2022. "Personalized route recommendation for ride-hailing with deep inverse reinforcement learning and real-time traffic conditions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    2. Liu, Shan & Zhang, Ya & Wang, Zhengli & Gu, Shiyi, 2023. "AdaBoost-Bagging deep inverse reinforcement learning for autonomous taxi cruising route and speed planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    3. Alcaraz, Juan J. & Losilla, Fernando & Caballero-Arnaldos, Luis, 2022. "Online model-based reinforcement learning for decision-making in long distance routes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    4. Mo, Baichuan & Wang, Qingyi & Guo, Xiaotong & Winkenbach, Matthias & Zhao, Jinhua, 2023. "Predicting drivers’ route trajectories in last-mile delivery using a pair-wise attention-based pointer neural network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    5. Tao, Jiawei & Dai, Hongyan & Chen, Weiwei & Jiang, Hai, 2023. "The value of personalized dispatch in O2O on-demand delivery services," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1022-1035.
    6. Meena, Purushottam & Kumar, Gopal, 2022. "Online food delivery companies' performance and consumers expectations during Covid-19: An investigation using machine learning approach," Journal of Retailing and Consumer Services, Elsevier, vol. 68(C).
    7. Keerthana Sivamayil & Elakkiya Rajasekar & Belqasem Aljafari & Srete Nikolovski & Subramaniyaswamy Vairavasundaram & Indragandhi Vairavasundaram, 2023. "A Systematic Study on Reinforcement Learning Based Applications," Energies, MDPI, vol. 16(3), pages 1-23, February.
    8. Yan, Yimo & Chow, Andy H.F. & Ho, Chin Pang & Kuo, Yong-Hong & Wu, Qihao & Ying, Chengshuo, 2022. "Reinforcement learning for logistics and supply chain management: Methodologies, state of the art, and future opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 162(C).
    9. Liu, Zeyu & Li, Xueping & Khojandi, Anahita, 2022. "The flying sidekick traveling salesman problem with stochastic travel time: A reinforcement learning approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    10. Basso, Rafael & Kulcsár, Balázs & Sanchez-Diaz, Ivan & Qu, Xiaobo, 2022. "Dynamic stochastic electric vehicle routing with safe reinforcement learning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    11. Fan, Zhang & Yanjie, Ji & Huitao, Lv & Yuqian, Zhang & Blythe, Phil & Jialiang, Fan, 2022. "Travel satisfaction of delivery electric two-wheeler riders: Evidence from Nanjing, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 253-266.
    12. He, Xinyu & He, Fang & Li, Lishuai & Zhang, Lei & Xiao, Gang, 2022. "A route network planning method for urban air delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Shan & Jiang, Hai, 2022. "Personalized route recommendation for ride-hailing with deep inverse reinforcement learning and real-time traffic conditions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    2. Wong, Melvin & Farooq, Bilal & Bilodeau, Guillaume-Alexandre, 2016. "Next Direction Route Choice Model for Cyclist Using Panel Data," 57th Transportation Research Forum (51st CTRF) Joint Conference, Toronto, Ontario, May 1-4, 2016 319265, Transportation Research Forum.
    3. van Oijen, Tim P. & Daamen, Winnie & Hoogendoorn, Serge P., 2020. "Estimation of a recursive link-based logit model and link flows in a sensor equipped network," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 262-281.
    4. Mai, Tien & Bui, The Viet & Nguyen, Quoc Phong & Le, Tho V., 2023. "Estimation of recursive route choice models with incomplete trip observations," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 313-331.
    5. Stefan Flügel & Nina Hulleberg & Aslak Fyhri & Christian Weber & Gretar Ævarsson, 2019. "Empirical speed models for cycling in the Oslo road network," Transportation, Springer, vol. 46(4), pages 1395-1419, August.
    6. Anowar, Sabreena & Eluru, Naveen & Hatzopoulou, Marianne, 2017. "Quantifying the value of a clean ride: How far would you bicycle to avoid exposure to traffic-related air pollution?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 105(C), pages 66-78.
    7. Ospina, Juan P. & Duque, Juan C. & Botero-Fernández, Verónica & Montoya, Alejandro, 2022. "The maximal covering bicycle network design problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 222-236.
    8. Paulsen, Mads & Rich, Jeppe, 2023. "Societally optimal expansion of bicycle networks," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    9. Tien Mai & The Viet Bui & Quoc Phong Nguyen & Tho V. Le, 2022. "Estimation of Recursive Route Choice Models with Incomplete Trip Observations," Papers 2204.12992, arXiv.org.
    10. Meister, Adrian & Felder, Matteo & Schmid, Basil & Axhausen, Kay W., 2023. "Route choice modeling for cyclists on urban networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    11. McArthur, David Philip & Hong, Jinhyun, 2019. "Visualising where commuting cyclists travel using crowdsourced data," Journal of Transport Geography, Elsevier, vol. 74(C), pages 233-241.
    12. Fitch, Dillon T. & Handy, Susan L., 2020. "Road environments and bicyclist route choice: The cases of Davis and San Francisco, CA," Journal of Transport Geography, Elsevier, vol. 85(C).
    13. Felipe González & Carlos Melo-Riquelme & Louis Grange, 2016. "A combined destination and route choice model for a bicycle sharing system," Transportation, Springer, vol. 43(3), pages 407-423, May.
    14. Scott, Darren M. & Lu, Wei & Brown, Matthew J., 2021. "Route choice of bike share users: Leveraging GPS data to derive choice sets," Journal of Transport Geography, Elsevier, vol. 90(C).
    15. Li, Dawei & Feng, Siqi & Song, Yuchen & Lai, Xinjun & Bekhor, Shlomo, 2023. "Asymmetric closed-form route choice models: Formulations and comparative applications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 171(C).
    16. Bhat, Chandra R. & Dubey, Subodh K. & Nagel, Kai, 2015. "Introducing non-normality of latent psychological constructs in choice modeling with an application to bicyclist route choice," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 341-363.
    17. Vedel, Suzanne Elizabeth & Jacobsen, Jette Bredahl & Skov-Petersen, Hans, 2017. "Bicyclists’ preferences for route characteristics and crowding in Copenhagen – A choice experiment study of commuters," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 53-64.
    18. Nuñez, Javier Yesid Mahecha & Bisconsini, Danilo Rinaldi & Rodrigues da Silva, Antônio Nélson, 2020. "Combining environmental quality assessment of bicycle infrastructures with vertical acceleration measurements," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 447-458.
    19. Seungkyu Ryu, 2020. "A Bicycle Origin–Destination Matrix Estimation Based on a Two-Stage Procedure," Sustainability, MDPI, vol. 12(7), pages 1-14, April.
    20. Bram Boettge & Damon M. Hall & Thomas Crawford, 2017. "Assessing the Bicycle Network in St. Louis: A PlaceBased User-Centered Approach," Sustainability, MDPI, vol. 9(2), pages 1-18, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:142:y:2020:i:c:s1366554520307213. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.