IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v75y2015icp36-57.html
   My bibliography  Save this article

An anisotropic continuum model considering bi-directional information impact

Author

Listed:
  • Zheng, Liang
  • Jin, Peter J.
  • Huang, Helai

Abstract

In traffic flow with naturalistic driving only, stimulus information pre-dominantly comes from the preceding vehicles with drivers occasionally responding to the following vehicles through the inspection of rear-view mirrors. Such one-sided information propagation may potentially be altered in future connected vehicle environment. This brings new motivations of modeling vehicle dynamics under bi-directional information propagation. In this study, stemming from microscopic bi-directional car-following models, a continuum traffic flow model is put forward that incorporates the bi-directional information impact macroscopically but can still preserve the anisotropic characteristics of traffic flow and avoid non-physical phenomenon such as wrong-way travels. We then analyze the properties of the continuum model and respectively illustrate the condition that guarantees the anisotropy, eradicates the negative travel speed, preserves the traveling waves and keeps the linear stability. Through a series of numerical experiments, it is concluded that (1) under the bi-directional looking context only when the backward weight ratio belongs to an appropriate range then the anisotropic property can be maintained; (2) forward-propagating traffic density waves and standing waves emerge with the increasing consideration ratio for backward information; (3) the more aggressive driving behaviors for the forward direction can delay the backward-propagating and speed up the forward-propagating of traffic density waves; (4) positive holding effect and negative pushing effect of backward looking can also be observed under different backward weight ratios; and (5) traffic flow stability varies with different proportion of backward traffic information contribution and such stability impact is sensitive to the initial traffic density condition. This proposed continuum model may contribute to future development of traffic control and coordination in future connected vehicle environment.

Suggested Citation

  • Zheng, Liang & Jin, Peter J. & Huang, Helai, 2015. "An anisotropic continuum model considering bi-directional information impact," Transportation Research Part B: Methodological, Elsevier, vol. 75(C), pages 36-57.
  • Handle: RePEc:eee:transb:v:75:y:2015:i:c:p:36-57
    DOI: 10.1016/j.trb.2015.02.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261515000399
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2015.02.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Rui & Wu, Qing-Song & Zhu, Zuo-Jin, 2002. "A new continuum model for traffic flow and numerical tests," Transportation Research Part B: Methodological, Elsevier, vol. 36(5), pages 405-419, June.
    2. Denos C. Gazis & Robert Herman & Richard W. Rothery, 1961. "Nonlinear Follow-the-Leader Models of Traffic Flow," Operations Research, INFORMS, vol. 9(4), pages 545-567, August.
    3. Helbing, Dirk, 1997. "Modeling multi-lane traffic flow with queuing effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 242(1), pages 175-194.
    4. Sun, Di-Hua & Liao, Xiao-Yong & Peng, Guang-Han, 2011. "Effect of looking backward on traffic flow in an extended multiple car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(4), pages 631-635.
    5. Daganzo, Carlos, 1994. "The Cell Transmission Model: Network Traffic," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt9pz309w7, Institute of Transportation Studies, UC Berkeley.
    6. Zhang, H. M., 1999. "Analyses of the stability and wave properties of a new continuum traffic theory," Transportation Research Part B: Methodological, Elsevier, vol. 33(6), pages 399-415, August.
    7. Papageorgiou, Markos & Blosseville, Jean-Marc & Hadj-Salem, Habib, 1989. "Macroscopic modelling of traffic flow on the Boulevard Périphérique in Paris," Transportation Research Part B: Methodological, Elsevier, vol. 23(1), pages 29-47, February.
    8. H. X. Ge & H. B. Zhu & S. Q. Dai, 2006. "Effect of looking backward on traffic flow in a cooperative driving car following model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 54(4), pages 503-507, December.
    9. Zheng, Liang & Ma, Shoufeng & Zhong, Shiquan, 2011. "Analysis of honk effect on the traffic flow in a cellular automaton model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1072-1084.
    10. Gipps, P.G., 1981. "A behavioural car-following model for computer simulation," Transportation Research Part B: Methodological, Elsevier, vol. 15(2), pages 105-111, April.
    11. Lebacque, Jean-Patrick & Mammar, Salim & Haj-Salem, Habib, 2007. "The Aw-Rascle and Zhang's model: Vacuum problems, existence and regularity of the solutions of the Riemann problem," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 710-721, August.
    12. Jianzhong Chen & Zhongke Shi & Yanmei Hu, 2012. "Stabilization Analysis Of A Multiple Look-Ahead Model With Driver Reaction Delays," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 23(06), pages 1-16.
    13. Ross, Paul, 1988. "Traffic dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 22(6), pages 421-435, December.
    14. Zhang, H. M., 2002. "A non-equilibrium traffic model devoid of gas-like behavior," Transportation Research Part B: Methodological, Elsevier, vol. 36(3), pages 275-290, March.
    15. Zheng, Liang & Zhong, Shiquan & Ma, Shoufeng, 2013. "Towards the bi-directional cellular automaton model with perception ranges," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(14), pages 3028-3038.
    16. Robert E. Chandler & Robert Herman & Elliott W. Montroll, 1958. "Traffic Dynamics: Studies in Car Following," Operations Research, INFORMS, vol. 6(2), pages 165-184, April.
    17. Daganzo, Carlos F., 1995. "Requiem for second-order fluid approximations of traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 29(4), pages 277-286, August.
    18. Daganzo, Carlos F., 1994. "The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory," Transportation Research Part B: Methodological, Elsevier, vol. 28(4), pages 269-287, August.
    19. Kai Nagel, 1996. "Particle Hopping Models and Traffic Flow Theory," Working Papers 96-04-015, Santa Fe Institute.
    20. Liang Zheng & Zhengbing He, 2015. "A new car following model from the perspective of visual imaging," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 26(08), pages 1-20.
    21. Davis, L.C., 2003. "Modifications of the optimal velocity traffic model to include delay due to driver reaction time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 319(C), pages 557-567.
    22. Zhang, H. M., 1998. "A theory of nonequilibrium traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 32(7), pages 485-498, September.
    23. Zhang, H. M., 2003. "Anisotropic property revisited--does it hold in multi-lane traffic?," Transportation Research Part B: Methodological, Elsevier, vol. 37(6), pages 561-577, July.
    24. Herrmann, Matthias & Kerner, Boris S, 1998. "Local cluster effect in different traffic flow models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 255(1), pages 163-188.
    25. Yu, Lei & Li, Tong & Shi, Zhong-Ke, 2010. "Density waves in a traffic flow model with reaction-time delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(13), pages 2607-2616.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Lu & Jafaripournimchahi, Ammar & Hu, Wusheng, 2020. "A forward-looking anticipative viscous high-order continuum model considering two leading vehicles for traffic flow through wireless V2X communication in autonomous and connected vehicle environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    2. Hu, Yanmei & Ma, Tianshan & Chen, Jianzhong, 2021. "Multi-anticipative bi-directional visual field traffic flow models in the connected vehicle environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    3. Ma, Ke & Wang, Hao & Ruan, Tiancheng, 2021. "Analysis of road capacity and pollutant emissions: Impacts of Connected and automated vehicle platoons on traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    4. Yi, Ziwei & Lu, Wenqi & Qu, Xu & Gan, Jing & Li, Linheng & Ran, Bin, 2022. "A bidirectional car-following model considering distance balance between adjacent vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    5. Mohammadian, Saeed & Zheng, Zuduo & Haque, Md. Mazharul & Bhaskar, Ashish, 2021. "Performance of continuum models for realworld traffic flows: Comprehensive benchmarking," Transportation Research Part B: Methodological, Elsevier, vol. 147(C), pages 132-167.
    6. Jafaripournimchahi, Ammar & Cai, Yingfeng & Wang, Hai & Sun, Lu & Yang, Biao, 2022. "Stability analysis of delayed-feedback control effect in the continuum traffic flow of autonomous vehicles without V2I communication," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    7. Ngoduy, D., 2021. "Noise-induced instability of a class of stochastic higher order continuum traffic models," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 260-278.
    8. Yanhong Wang & Rui Jiang & Yu (Marco) Nie & Ziyou Gao, 2021. "Impact of Information on Topology-Induced Traffic Oscillations," Transportation Science, INFORMS, vol. 55(2), pages 475-490, March.
    9. Zhai, Cong & Wu, Weitiao, 2021. "A continuous traffic flow model considering predictive headway variation and preceding vehicle’s taillight effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin, Wen-Long, 2016. "On the equivalence between continuum and car-following models of traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 543-559.
    2. Sun, Lu & Jafaripournimchahi, Ammar & Kornhauser, Alain & Hu, Wushen, 2020. "A new higher-order viscous continuum traffic flow model considering driver memory in the era of autonomous and connected vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    3. Jiang, Rui & Wu, Qing-Song & Zhu, Zuo-Jin, 2002. "A new continuum model for traffic flow and numerical tests," Transportation Research Part B: Methodological, Elsevier, vol. 36(5), pages 405-419, June.
    4. Ngoduy, D., 2021. "Noise-induced instability of a class of stochastic higher order continuum traffic models," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 260-278.
    5. Mohammadian, Saeed & Zheng, Zuduo & Haque, Md. Mazharul & Bhaskar, Ashish, 2021. "Performance of continuum models for realworld traffic flows: Comprehensive benchmarking," Transportation Research Part B: Methodological, Elsevier, vol. 147(C), pages 132-167.
    6. Mohan, Ranju & Ramadurai, Gitakrishnan, 2021. "Multi-class traffic flow model based on three dimensional flow–concentration surface," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 577(C).
    7. Hu, Yanmei & Ma, Tianshan & Chen, Jianzhong, 2021. "Multi-anticipative bi-directional visual field traffic flow models in the connected vehicle environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    8. Yi, Jingang & Lin, Hao & Alvarez, Luis & Horowitz, Roberto, 2003. "Stability of macroscopic traffic flow modeling through wavefront expansion," Transportation Research Part B: Methodological, Elsevier, vol. 37(7), pages 661-679, August.
    9. Mohammadian, Saeed & Zheng, Zuduo & Haque, Mazharul & Bhaskar, Ashish, 2023. "NET-RAT: Non-equilibrium traffic model based on risk allostasis theory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 174(C).
    10. Kai Nagel & Peter Wagner & Richard Woesler, 2003. "Still Flowing: Approaches to Traffic Flow and Traffic Jam Modeling," Operations Research, INFORMS, vol. 51(5), pages 681-710, October.
    11. Li, Xiaopeng & Ouyang, Yanfeng, 2011. "Characterization of traffic oscillation propagation under nonlinear car-following laws," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1346-1361.
    12. Jiang, Rui & Wu, Qing-Song, 2003. "Study on propagation speed of small disturbance from a car-following approach," Transportation Research Part B: Methodological, Elsevier, vol. 37(1), pages 85-99, January.
    13. Li, Xiaopeng & Wang, Xin & Ouyang, Yanfeng, 2012. "Prediction and field validation of traffic oscillation propagation under nonlinear car-following laws," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 409-423.
    14. Tang, Tie-Qiao & Shi, Wei-Fang & Huang, Hai-Jun & Wu, Wen-Xiang & Song, Ziqi, 2019. "A route-based traffic flow model accounting for interruption factors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 767-785.
    15. Ranju Mohan & Gitakrishnan Ramadurai, 2015. "Submission to the DTA2012 Special Issue: A Case for Higher-Order Traffic Flow Models in DTA," Networks and Spatial Economics, Springer, vol. 15(3), pages 765-790, September.
    16. Corli, Andrea & Fan, Haitao, 2023. "String stability in traffic flows," Applied Mathematics and Computation, Elsevier, vol. 443(C).
    17. Wang, Zihao & Ge, Hongxia & Cheng, Rongjun, 2018. "Nonlinear analysis for a modified continuum model considering driver’s memory and backward looking effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 18-27.
    18. Li, Xiaopeng & Cui, Jianxun & An, Shi & Parsafard, Mohsen, 2014. "Stop-and-go traffic analysis: Theoretical properties, environmental impacts and oscillation mitigation," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 319-339.
    19. Salim Mammar & Jean-Patrick Lebacque & Habib Haj Salem, 2009. "Riemann Problem Resolution and Godunov Scheme for the Aw-Rascle-Zhang Model," Transportation Science, INFORMS, vol. 43(4), pages 531-545, November.
    20. Zhai, Cong & Wu, Weitiao, 2022. "A continuum model considering the uncertain velocity of preceding vehicles on gradient highways," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:75:y:2015:i:c:p:36-57. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.