IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v319y2003icp557-567.html
   My bibliography  Save this article

Modifications of the optimal velocity traffic model to include delay due to driver reaction time

Author

Listed:
  • Davis, L.C.

Abstract

Straightforward inclusion of a delay time due to driver reaction time in the optimal velocity (OV) model reveals an unphysical sensitivity to driver reaction times. For delay times of nearly 1s, which are typical for most drivers, oscillations in vehicle velocity induced by encountering a slower vehicle grow until limited by non-linear effects. Simulations demonstrate that unrealistically small delay times are needed for lengthy platoons of vehicles to avoid collisions. This is a serious limitation of the OV model. Other models, such as the inertial car-following model, allow somewhat larger delay times, but also show unphysical effects. Modifications of the OV model to overcome this deficiency are demonstrated. In addition, unphysical short-period oscillations of vehicle velocity are eliminated by introducing partial car-following into the model. Traffic jams are caused primarily by the delay due to driver reaction time in the modified OV model.

Suggested Citation

  • Davis, L.C., 2003. "Modifications of the optimal velocity traffic model to include delay due to driver reaction time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 319(C), pages 557-567.
  • Handle: RePEc:eee:phsmap:v:319:y:2003:i:c:p:557-567
    DOI: 10.1016/S0378-4371(02)01457-7
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437102014577
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/S0378-4371(02)01457-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Lu & Jafaripournimchahi, Ammar & Hu, Wusheng, 2020. "A forward-looking anticipative viscous high-order continuum model considering two leading vehicles for traffic flow through wireless V2X communication in autonomous and connected vehicle environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    2. Hossain, Md. Anowar & Tanimoto, Jun, 2022. "A microscopic traffic flow model for sharing information from a vehicle to vehicle by considering system time delay effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    3. Zheng, Liang & Jin, Peter J. & Huang, Helai, 2015. "An anisotropic continuum model considering bi-directional information impact," Transportation Research Part B: Methodological, Elsevier, vol. 75(C), pages 36-57.
    4. Calvert, Simeon C. & Schakel, Wouter J. & van Lint, J.W.C., 2020. "A generic multi-scale framework for microscopic traffic simulation part II – Anticipation Reliance as compensation mechanism for potential task overload," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 42-63.
    5. Li, Xiaopeng & Wang, Xin & Ouyang, Yanfeng, 2012. "Prediction and field validation of traffic oscillation propagation under nonlinear car-following laws," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 409-423.
    6. Wang, Qiao & Song, Weiguo & Zhang, Jun & Wang, Shujie & Wu, Chunlin & Lo, Siuming, 2019. "Understanding single-file movement with ant experiments and a multi-grid CA model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 1-13.
    7. Wang, Xiao & Jiang, Rui & Li, Li & Lin, Yi-Lun & Wang, Fei-Yue, 2019. "Long memory is important: A test study on deep-learning based car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 786-795.
    8. Li, Xiaopeng & Cui, Jianxun & An, Shi & Parsafard, Mohsen, 2014. "Stop-and-go traffic analysis: Theoretical properties, environmental impacts and oscillation mitigation," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 319-339.
    9. Liu, Ronghui & Van Vliet, Dirck & Watling, David, 2006. "Microsimulation models incorporating both demand and supply dynamics," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(2), pages 125-150, February.
    10. Xiaomei, Zhao & Ziyou, Gao, 2007. "The stability analysis of the full velocity and acceleration velocity model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(2), pages 679-686.
    11. Nasser Hassan Sweilam & Seham Mahyoub Al-Mekhlafi & Taghreed Abdul Rahman Assiri, 2017. "Numerical Study for Time Delay Multistrain Tuberculosis Model of Fractional Order," Complexity, Hindawi, vol. 2017, pages 1-14, July.
    12. Ronan Keane & H. Oliver Gao, 2021. "Fast Calibration of Car-Following Models to Trajectory Data Using the Adjoint Method," Transportation Science, INFORMS, vol. 55(3), pages 592-615, May.
    13. Sun, Lu & Jafaripournimchahi, Ammar & Kornhauser, Alain & Hu, Wushen, 2020. "A new higher-order viscous continuum traffic flow model considering driver memory in the era of autonomous and connected vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    14. van Lint, J.W.C. & Calvert, S.C., 2018. "A generic multi-level framework for microscopic traffic simulation—Theory and an example case in modelling driver distraction," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 63-86.
    15. Ahmed Salem & Rawia Babusail, 2022. "Finite-Time Stability in Nonhomogeneous Delay Differential Equations of Fractional Hilfer Type," Mathematics, MDPI, vol. 10(9), pages 1-14, May.
    16. Li, Xiaopeng & Ouyang, Yanfeng, 2011. "Characterization of traffic oscillation propagation under nonlinear car-following laws," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1346-1361.
    17. Sun, Dihua & Chen, Dong & Zhao, Min & Liu, Weining & Zheng, Linjiang, 2018. "Linear stability and nonlinear analyses of traffic waves for the general nonlinear car-following model with multi-time delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 293-307.
    18. Lyu, Hao & Cheng, Rongjun & Ge, Hongxia, 2022. "Bifurcation analysis of an extended macro model considering time delay and anticipation effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    19. Yifan Pan & Yongjiang Wang & Baobin Miao & Rongjun Cheng, 2022. "Stabilization Strategy of a Novel Car-Following Model with Time Delay and Memory Effect of the Driver," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
    20. Li, Xiaopeng & Peng, Fan & Ouyang, Yanfeng, 2010. "Measurement and estimation of traffic oscillation properties," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 1-14, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:319:y:2003:i:c:p:557-567. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.