Advanced Search
MyIDEAS: Login to save this article or follow this journal

Recovery of inter- and intra-personal heterogeneity using mixed logit models

Contents:

Author Info

  • Hess, Stephane
  • Train, Kenneth E.

Abstract

Most applications of discrete choice models in transportation now utilise a random coefficient specification, such as mixed logit, to represent taste heterogeneity. However, little is known about the ability of these models to capture the heterogeneity in finite samples (as opposed to asymptotically). Also, due to the computational intensity of the standard estimation procedures, several alternative, less demanding methods have been proposed, and yet the relative accuracy of these methods has not been investigated. This is especially true in the context of work looking at joint inter-respondent and intra-respondent variation. This paper presents an overview of the various different estimators, gives insights into some of the theoretical properties, and analyses their performance in a large scale study on simulated data. In particular, we specify 31 different forms of heterogeneity, with multiple versions of each dataset, and with results from over 16,000 mixed logit estimation runs. The findings suggest that variation in tastes over consumers is captured by all the methods, including the simpler versions, at least when sample size is sufficiently large. When tastes vary over choice situations for each consumer, as well as over consumers, the ability of the methods to capture and differentiate the two sources of heterogeneity becomes more tenuous. Only the most computationally intensive approach is able to capture adequately the two sources of variation, but at the cost of very high run times. Our results highlight the difficulty of retrieving taste heterogeneity with only cross-sectional data, providing further evidence of the benefits of repeated choice data. Our findings also suggest that the data requirements of random coefficients models may be more substantial than is commonly assumed, further reinforcing concerns about small sample issues.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/pii/S019126151100052X
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal Transportation Research Part B: Methodological.

Volume (Year): 45 (2011)
Issue (Month): 7 (August)
Pages: 973-990

as in new window
Handle: RePEc:eee:transb:v:45:y:2011:i:7:p:973-990

Contact details of provider:
Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description

Order Information:
Postal: http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
Web: https://shop.elsevier.com/order?id=548&ref=548_01_ooc_1&version=01

Related research

Keywords: Simulation-based estimation Approximation Random taste heterogeneity Mixed logit Intra-respondent Panel data;

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Bhat, Chandra R. & Sardesai, Rupali, 2006. "The impact of stop-making and travel time reliability on commute mode choice," Transportation Research Part B: Methodological, Elsevier, vol. 40(9), pages 709-730, November.
  2. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387.
  3. Bhat, Chandra R., 2003. "Simulation estimation of mixed discrete choice models using randomized and scrambled Halton sequences," Transportation Research Part B: Methodological, Elsevier, vol. 37(9), pages 837-855, November.
  4. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
  5. Hess, Stephane & Rose, John M., 2009. "Allowing for intra-respondent variations in coefficients estimated on repeated choice data," Transportation Research Part B: Methodological, Elsevier, vol. 43(6), pages 708-719, July.
  6. Hess, Stephane & Train, Kenneth E. & Polak, John W., 2006. "On the use of a Modified Latin Hypercube Sampling (MLHS) method in the estimation of a Mixed Logit Model for vehicle choice," Transportation Research Part B: Methodological, Elsevier, vol. 40(2), pages 147-163, February.
  7. Bhat, Chandra R., 2001. "Quasi-random maximum simulated likelihood estimation of the mixed multinomial logit model," Transportation Research Part B: Methodological, Elsevier, vol. 35(7), pages 677-693, August.
  8. Bhat, Chandra R. & Castelar, Saul, 2002. "A unified mixed logit framework for modeling revealed and stated preferences: formulation and application to congestion pricing analysis in the San Francisco Bay area," Transportation Research Part B: Methodological, Elsevier, vol. 36(7), pages 593-616, August.
  9. Ruud, Paul A., 2000. "An Introduction to Classical Econometric Theory," OUP Catalogue, Oxford University Press, number 9780195111644, September.
  10. David Revelt & Kenneth Train, 1998. "Mixed Logit With Repeated Choices: Households' Choices Of Appliance Efficiency Level," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 647-657, November.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Glerum, Aurélie & Atasoy, Bilge & Bierlaire, Michel, 2014. "Using semi-open questions to integrate perceptions in choice models," Journal of choice modelling, Elsevier, vol. 10(C), pages 11-33.
  2. Mikołaj Czajkowski & Marek Giergiczny & William H. Greene, 2012. "Learning and Fatigue Effects Revisited. The Impact of Accounting for Unobservable Preference and Scale Heterogeneity on Perceived Ordering Effects in Multiple Choice Task Discrete Choice Experiments," Working Papers 2012-08, Faculty of Economic Sciences, University of Warsaw.
  3. Crabbe, Marjolein & Akinc, Deniz & Vandebroek, Martina, 2014. "Fast algorithms to generate individualized designs for the mixed logit choice model," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 1-15.
  4. Hess, Stephane & Stathopoulos, Amanda, 2013. "Linking response quality to survey engagement: A combined random scale and latent variable approach," Journal of choice modelling, Elsevier, vol. 7(C), pages 1-12.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:45:y:2011:i:7:p:973-990. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.