IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v43y2009i3p311-324.html
   My bibliography  Save this article

Optimal infrastructure condition sampling over space and time for maintenance decision-making under uncertainty

Author

Listed:
  • Mishalani, Rabi G.
  • Gong, Liying

Abstract

Infrastructure management is the process through which inspection, maintenance, and rehabilitation (IM&R) decisions are made to minimize the total life-cycle cost. Measurement, forecasting, and spatial sampling are three main sources of errors introducing uncertainty into the process. The first two uncertainties are captured in the infrastructure management literature. However, the third one has not been recognized and quantified. This paper presents a methodology where the spatial sampling uncertainty in question is captured and the sample size is incorporated as a decision variable in an optimization framework. An illustrative realistic example is presented to demonstrate an application of the developed framework. The results indicate that by not addressing the sampling uncertainty and decisions, the optimum IM&R decisions would not be achieved, and consequently, marked unnecessary overspending could take place.

Suggested Citation

  • Mishalani, Rabi G. & Gong, Liying, 2009. "Optimal infrastructure condition sampling over space and time for maintenance decision-making under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 43(3), pages 311-324, March.
  • Handle: RePEc:eee:transb:v:43:y:2009:i:3:p:311-324
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(08)00083-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Samer Madanat & Moshe Ben-Akiva, 1994. "Optimal Inspection and Repair Policies for Infrastructure Facilities," Transportation Science, INFORMS, vol. 28(1), pages 55-62, February.
    2. Durango, Pablo L. & Madanat, Samer M., 2002. "Optimal maintenance and repair policies in infrastructure management under uncertain facility deterioration rates: an adaptive control approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(9), pages 763-778, November.
    3. Humplick, Frannie, 1992. "Highway pavement distress evaluation: Modeling measurement error," Transportation Research Part B: Methodological, Elsevier, vol. 26(2), pages 135-154, April.
    4. Durango-Cohen, Pablo L., 2007. "A time series analysis framework for transportation infrastructure management," Transportation Research Part B: Methodological, Elsevier, vol. 41(5), pages 493-505, June.
    5. Ouyang, Yanfeng & Madanat, Samer, 2006. "An analytical solution for the finite-horizon pavement resurfacing planning problem," Transportation Research Part B: Methodological, Elsevier, vol. 40(9), pages 767-778, November.
    6. Mishalani, Rabi G. & Koutsopoulos, Haris N., 2002. "Modeling the spatial behavior of infrastructure condition," Transportation Research Part B: Methodological, Elsevier, vol. 36(2), pages 171-194, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhi-Chun Li & Dian Sheng, 2014. "Pavement rehabilitation scheduling and toll pricing under different regulatory regimes," Annals of Operations Research, Springer, vol. 217(1), pages 337-355, June.
    2. Durango-Cohen, Pablo L. & Madanat, Samer M., 2008. "Optimization of inspection and maintenance decisions for infrastructure facilities under performance model uncertainty: A quasi-Bayes approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(8), pages 1074-1085, October.
    3. Zhang, Le & Fu, Liangliang & Gu, Weihua & Ouyang, Yanfeng & Hu, Yaohua, 2017. "A general iterative approach for the system-level joint optimization of pavement maintenance, rehabilitation, and reconstruction planning," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 378-400.
    4. Kobayashi, Kiyoshi & Kaito, Kiyoyuki & Lethanh, Nam, 2012. "A statistical deterioration forecasting method using hidden Markov model for infrastructure management," Transportation Research Part B: Methodological, Elsevier, vol. 46(4), pages 544-561.
    5. Sathaye, Nakul & Madanat, Samer, 2011. "A bottom-up solution for the multi-facility optimal pavement resurfacing problem," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 1004-1017, August.
    6. Chu, Chih-Yuan & Durango-Cohen, Pablo L., 2008. "Estimation of dynamic performance models for transportation infrastructure using panel data," Transportation Research Part B: Methodological, Elsevier, vol. 42(1), pages 57-81, January.
    7. Lee, Jinwoo & Madanat, Samer, 2015. "A joint bottom-up solution methodology for system-level pavement rehabilitation and reconstruction," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 106-122.
    8. Seyedshohadaie, S. Reza & Damnjanovic, Ivan & Butenko, Sergiy, 2010. "Risk-based maintenance and rehabilitation decisions for transportation infrastructure networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(4), pages 236-248, May.
    9. Pantha, Bhoj Raj & Yatabe, Ryuichi & Bhandary, Netra Prakash, 2010. "GIS-based highway maintenance prioritization model: an integrated approach for highway maintenance in Nepal mountains," Journal of Transport Geography, Elsevier, vol. 18(3), pages 426-433.
    10. Gu, Weihua & Ouyang, Yanfeng & Madanat, Samer, 2012. "Joint optimization of pavement maintenance and resurfacing planning," Transportation Research Part B: Methodological, Elsevier, vol. 46(4), pages 511-519.
    11. Durango-Cohen, Pablo L., 2007. "A time series analysis framework for transportation infrastructure management," Transportation Research Part B: Methodological, Elsevier, vol. 41(5), pages 493-505, June.
    12. Kuhn, Kenneth D. & Madanat, Samer M., 2005. "Robust Maintenance Policies for Markovian Systems under Model Uncertainty," University of California Transportation Center, Working Papers qt1d85j6mt, University of California Transportation Center.
    13. Prozzi, J A & Madanat, S M, 2004. "Development of Pavement Performance Models by Combining Experimental and Field Data," University of California Transportation Center, Working Papers qt6cf8v5cw, University of California Transportation Center.
    14. Sathaye, Nakul & Madanat, Samer, 2012. "A bottom-up optimal pavement resurfacing solution approach for large-scale networks," Transportation Research Part B: Methodological, Elsevier, vol. 46(4), pages 520-528.
    15. Durango, Pablo L. & Madanat, Samer M., 2002. "Optimal maintenance and repair policies in infrastructure management under uncertain facility deterioration rates: an adaptive control approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(9), pages 763-778, November.
    16. Robelin, Charles-Antoine & Madanat, Samer M, 2007. "History-Dependent Optimization of Bridge Maintenance and Replacement Decisions Using Markov Decision Process," University of California Transportation Center, Working Papers qt6c94v984, University of California Transportation Center.
    17. Robelin, Charles-Antoine, 2006. "Facility-Level and System-Level Stochastic Optimization of Bridge Maintenance Policies for Markovian Management Systems," University of California Transportation Center, Working Papers qt0475p5qp, University of California Transportation Center.
    18. Bismut, Elizabeth & Straub, Daniel, 2021. "Optimal adaptive inspection and maintenance planning for deteriorating structural systems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    19. Chu, James C. & Huang, Kai-Hsiang, 2018. "Mathematical programming framework for modeling and comparing network-level pavement maintenance strategies," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 1-25.
    20. Zhang, Xueqing & Gao, Hui, 2012. "Road maintenance optimization through a discrete-time semi-Markov decision process," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 110-119.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:43:y:2009:i:3:p:311-324. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.