IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v34y2000i5p339-354.html
   My bibliography  Save this article

Evaluation of trip-inducing effects of new freeways using a structural equations model system of commuters' time use and travel

Author

Listed:
  • Fujii, Satoshi
  • Kitamura, Ryuichi

Abstract

A structural equations model system which represents the effects of transportation control measures on commuters' daily activity patterns after work hours is presented. A commuter's daily activity after work till going to sleep is defined in terms of variables that indicate time use and travel. These variables are the endogenous variables of the structural equations model system. The parameters of the model system are estimated using one-day activity diary data collected in 1994 in the Osaka-Kobe metropolitan area. The model system is applied to evaluate the impacts of hypothetical freeway lines in the Osaka-Kobe metropolitan area upon area residents' time use and travel.

Suggested Citation

  • Fujii, Satoshi & Kitamura, Ryuichi, 2000. "Evaluation of trip-inducing effects of new freeways using a structural equations model system of commuters' time use and travel," Transportation Research Part B: Methodological, Elsevier, vol. 34(5), pages 339-354, June.
  • Handle: RePEc:eee:transb:v:34:y:2000:i:5:p:339-354
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(99)00030-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Adler, Thomas & Ben-Akiva, Moshe, 1979. "A theoretical and empirical model of trip chaining behavior," Transportation Research Part B: Methodological, Elsevier, vol. 13(3), pages 243-257, September.
    2. Supernak, Janusz, 1992. "Temporal utility profiles of activities and travel: Uncertainty and decision making," Transportation Research Part B: Methodological, Elsevier, vol. 26(1), pages 60-76, February.
    3. Kitamura, Ryuichi, 1984. "A model of daily time allocation to discretionary out-of-home activities and trips," Transportation Research Part B: Methodological, Elsevier, vol. 18(3), pages 255-266, June.
    4. Kitamura, Ryuichi & Fujii, Satoshi & Pas, Eric I., 1997. "Time-use data, analysis and modeling: toward the next generation of transportation planning methodologies," Transport Policy, Elsevier, vol. 4(4), pages 225-235, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sabreena Anowar & Naveen Eluru & Luis F. Miranda-Moreno, 2014. "Alternative Modeling Approaches Used for Examining Automobile Ownership: A Comprehensive Review," Transport Reviews, Taylor & Francis Journals, vol. 34(4), pages 441-473, July.
    2. Golob, Thomas F., 2003. "Structural equation modeling for travel behavior research," Transportation Research Part B: Methodological, Elsevier, vol. 37(1), pages 1-25, January.
    3. Shiftan, Yoram & Outwater, Maren L. & Zhou, Yushuang, 2008. "Transit market research using structural equation modeling and attitudinal market segmentation," Transport Policy, Elsevier, vol. 15(3), pages 186-195, May.
    4. Konstadinos G. Goulias & Ram M. Pendyala, 2014. "Choice context," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 5, pages 101-130, Edward Elgar Publishing.
    5. Golob, Thomas F., 2011. "Structural Equation Modeling For Travel Behavior Research," University of California Transportation Center, Working Papers qt2pn5j58n, University of California Transportation Center.
    6. Jakobsson, C. & Fujii, S. & Gärling, T., 2000. "Determinants of private car users' acceptance of road pricing," Transport Policy, Elsevier, vol. 7(2), pages 153-158, April.
    7. Golob, Thomas F., 2001. "Structural Equation Modeling For Travel Behavior Research," University of California Transportation Center, Working Papers qt8pb2m1pk, University of California Transportation Center.
    8. Xuemei Fu & Zhicai Juan, 2016. "Empirical analysis and comparisons about time-allocation patterns across segments based on mode-specific preferences," Transportation, Springer, vol. 43(1), pages 37-51, January.
    9. Xuemei Fu & Zhicai Juan, 2016. "Empirical analysis and comparisons about time-allocation patterns across segments based on mode-specific preferences," Transportation, Springer, vol. 43(1), pages 37-51, January.
    10. Ren, Fang & Kwan, Mei-Po, 2009. "The impact of the Internet on human activity–travel patterns: analysis of gender differences using multi-group structural equation models," Journal of Transport Geography, Elsevier, vol. 17(6), pages 440-450.
    11. van Exel, Job & Rienstra, Sytze & Gommers, Michael & Pearman, Alan & Tsamboulas, Dimitrios, 2002. "EU involvement in TEN development: network effects and European value added," Transport Policy, Elsevier, vol. 9(4), pages 299-311, October.
    12. Rafiq, Rezwana & McNally, Michael G., 2022. "A structural analysis of the work tour behavior of transit commuters," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 61-79.
    13. Dahlgren, Joy, 2001. "How the Reconstruction of I-880 Affected Travel Behavior," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt4xr9v906, Institute of Transportation Studies, UC Berkeley.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Garling, Tommy & Kwan, Mei-Po & Golledge, Reginald G., 1991. "Computational-Process Modelling of Travel Decisions: Review and Conceptual Analysis," University of California Transportation Center, Working Papers qt6mk0h2s2, University of California Transportation Center.
    2. Lam, William H. K. & Yin, Yafeng, 2001. "An activity-based time-dependent traffic assignment model," Transportation Research Part B: Methodological, Elsevier, vol. 35(6), pages 549-574, July.
    3. T Gärling & T Kalén & J Romanus & M Selart & B Vilhelmson, 1998. "Computer Simulation of Household Activity Scheduling," Environment and Planning A, , vol. 30(4), pages 665-679, April.
    4. Golledge, Reginald G. & Kwan, Mei-Po & Garling, Tommy, 1991. "Computational-Process Modelling of Travel Decisions: Empirical Tests," University of California Transportation Center, Working Papers qt97j2x1bk, University of California Transportation Center.
    5. Allahviranloo, Mahdieh & Aissaoui, Leila, 2019. "A comparison of time-use behavior in metropolitan areas using pattern recognition techniques," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 271-287.
    6. Garling, Tommy & Kwan, Mei-Po & Golledge, Reginald G., 1993. "Computational-Process Modelling of Household Activity Scheduling," University of California Transportation Center, Working Papers qt0zf9w0bs, University of California Transportation Center.
    7. Theo Arentze & Harry Timmermans, 2002. "Modeling the Formation of Activity Agendas Using Reactive Agents," Environment and Planning B, , vol. 29(5), pages 719-728, October.
    8. Xiao Fu & William Lam, 2014. "A network equilibrium approach for modelling activity-travel pattern scheduling problems in multi-modal transit networks with uncertainty," Transportation, Springer, vol. 41(1), pages 37-55, January.
    9. Chen, Cynthia & Mokhtarian, Patricia L., 2000. "Modeling Individuals' Travel Time and Money Expenditures," Institute of Transportation Studies, Working Paper Series qt2mx2q8dk, Institute of Transportation Studies, UC Davis.
    10. Chen, Quizi, 2001. "An Exploration of Activity Scheduling and Rescheduling Processes," University of California Transportation Center, Working Papers qt9kb4q6vt, University of California Transportation Center.
    11. Saptarshi Das & Ashok Sekar & Roger Chen & Hyung Chul Kim & Timothy J. Wallington & Eric Williams, 2017. "Impacts of Autonomous Vehicles on Consumers Time-Use Patterns," Challenges, MDPI, vol. 8(2), pages 1-15, December.
    12. Toşa, Cristian & Sato, Hitomi & Morikawa, Takayuki & Miwa, Tomio, 2018. "Commuting behavior in emerging urban areas: Findings of a revealed-preferences and stated-intentions survey in Cluj-Napoca, Romania," Journal of Transport Geography, Elsevier, vol. 68(C), pages 78-93.
    13. Su, Rongxiang & Xiao, Jingyi & McBride, Elizabeth C. & Goulias, Konstadinos G., 2021. "Understanding senior's daily mobility patterns in California using human mobility motifs," Journal of Transport Geography, Elsevier, vol. 94(C).
    14. Combs, Tabitha S., 2017. "Examining changes in travel patterns among lower wealth households after BRT investment in Bogotá, Colombia," Journal of Transport Geography, Elsevier, vol. 60(C), pages 11-20.
    15. Kitamura, Ryuichi & Yamamoto, Toshiyuki & Fujii, Satoshi, 2003. "The effectiveness of panels in detecting changes in discrete travel behavior," Transportation Research Part B: Methodological, Elsevier, vol. 37(2), pages 191-206, February.
    16. Subbarao, S.S.V. & Krishna Rao, K,V., 2013. "Trip Chaining Behavior in Developing Countries: A Study of Mumbai Metropolitan Region, India," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 53, pages 1-7.
    17. Dick Ettema & Olu Ashiru & John Polak & Fabian Bastin, 2005. "Taste Heterogeneity and Substitution Patterns in Models of the Simultaneous Choice of Activity Timing and Duration," ERSA conference papers ersa05p439, European Regional Science Association.
    18. Jara-Díaz, Sergio & Rosales-Salas, Jorge, 2017. "Beyond transport time: A review of time use modeling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 97(C), pages 209-230.
    19. Li, Zhibin & Wang, Wei & Yang, Chen & Jiang, Guojun, 2013. "Exploring the causal relationship between bicycle choice and trip chain pattern," Transport Policy, Elsevier, vol. 29(C), pages 170-177.
    20. Margareta Friman & Lina Larhult & Tommy Gärling, 2013. "An analysis of soft transport policy measures implemented in Sweden to reduce private car use," Transportation, Springer, vol. 40(1), pages 109-129, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:34:y:2000:i:5:p:339-354. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.