IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v33y1999i5p337-350.html
   My bibliography  Save this article

Delays caused by a queue at a freeway exit ramp

Author

Listed:
  • Newell, G. F.

Abstract

We consider here what happens to traffic on a freeway when a queue from an exit ramp backs onto the freeway causing a partial blockage of the right lane. Exiting vehicles are confined to the right lane but through vehicles can travel in any lane. The two vehicle types interact but their queues must be treated separately. This illustrates a special case of a model of "freeways with special lanes" formulated by Daganzo (1997). Whereas Daganzo presented a numerical scheme of calculating flows, the emphasis here is on graphical evaluation of the complete evolution of the queues. The graphical solution more clearly illustrates the practical issues, at least in this special situation.

Suggested Citation

  • Newell, G. F., 1999. "Delays caused by a queue at a freeway exit ramp," Transportation Research Part B: Methodological, Elsevier, vol. 33(5), pages 337-350, June.
  • Handle: RePEc:eee:transb:v:33:y:1999:i:5:p:337-350
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(98)00039-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daganzo, Carlos F., 1997. "A continuum theory of traffic dynamics for freeways with special lanes," Transportation Research Part B: Methodological, Elsevier, vol. 31(2), pages 83-102, April.
    2. Newell, G. F., 1993. "A simplified theory of kinematic waves in highway traffic, part I: General theory," Transportation Research Part B: Methodological, Elsevier, vol. 27(4), pages 281-287, August.
    3. Daganzo, Carlos F. & Lin, Wei-Hua & Del Castillo, Jose M., 1997. "A simple physical principle for the simulation of freeways with special lanes and priority vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 31(2), pages 103-125, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin, Wen-Long & Zhang, H. Michael, 2013. "An instantaneous kinematic wave theory of diverging traffic," Transportation Research Part B: Methodological, Elsevier, vol. 48(C), pages 1-16.
    2. Jingqiu Guo & Xinyao Chen & Yuqi Pang & Yibing Wang & Pengjun Zheng, 2019. "Bottlenecks, Shockwave, and Off-Ramp Blockage on Freeways," Sustainability, MDPI, vol. 11(18), pages 1-23, September.
    3. Wen-Long Jin, 2015. "Analysis of Kinematic Waves Arising in Diverging Traffic Flow Models," Transportation Science, INFORMS, vol. 49(1), pages 28-45, February.
    4. Haitao, He & Menendez, Monica & Ilgin Guler, S., 2018. "Analytical evaluation of flexible-sharing strategies on multimodal arterials," Transportation Research Part A: Policy and Practice, Elsevier, vol. 114(PB), pages 364-379.
    5. Chen, Jing & Lin, Lan & Jiang, Rui, 2017. "Assigning on-ramp flows to maximize capacity of highway with two on-ramps and one off-ramp in between," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 347-357.
    6. Muñoz, Juan Carlos & Daganzo, Carlos F., 2002. "The bottleneck mechanism of a freeway diverge," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(6), pages 483-505, July.
    7. Juan Carlos Muñoz & Carlos F. Daganzo, 2003. "Structure of the Transition Zone Behind Freeway Queues," Transportation Science, INFORMS, vol. 37(3), pages 312-329, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin, Wen-Long, 2013. "A multi-commodity Lighthill–Whitham–Richards model of lane-changing traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 361-377.
    2. Helbing, Dirk & Hennecke, Ansgar & Shvetsov, Vladimir & Treiber, Martin, 2001. "MASTER: macroscopic traffic simulation based on a gas-kinetic, non-local traffic model," Transportation Research Part B: Methodological, Elsevier, vol. 35(2), pages 183-211, February.
    3. Jin, Wen-Long, 2018. "Unifiable multi-commodity kinematic wave model," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 639-659.
    4. Robert, Tim & Lin, Wei-Hua & Cassidy, Michael, 1999. "Validation of the Incremental Transfer Model," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt48s3v44r, Institute of Transportation Studies, UC Berkeley.
    5. Laval, Jorge A. & Leclercq, Ludovic, 2008. "Microscopic modeling of the relaxation phenomenon using a macroscopic lane-changing model," Transportation Research Part B: Methodological, Elsevier, vol. 42(6), pages 511-522, July.
    6. Juan Carlos Muñoz & Carlos F. Daganzo, 2003. "Structure of the Transition Zone Behind Freeway Queues," Transportation Science, INFORMS, vol. 37(3), pages 312-329, August.
    7. Nair, Rahul & Mahmassani, Hani S. & Miller-Hooks, Elise, 2011. "A porous flow approach to modeling heterogeneous traffic in disordered systems," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1331-1345.
    8. Daganzo, Carlos F., 1999. "A Behavioral Theory of Multi-Lane Traffic Flow Part I: Long Homogeneous Freeway Sections," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt8n96n91w, Institute of Transportation Studies, UC Berkeley.
    9. Logghe, S. & Immers, L.H., 2008. "Multi-class kinematic wave theory of traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 42(6), pages 523-541, July.
    10. Daganzo, Carlos F., 2002. "A behavioral theory of multi-lane traffic flow. Part I: Long homogeneous freeway sections," Transportation Research Part B: Methodological, Elsevier, vol. 36(2), pages 131-158, February.
    11. Wen-Long Jin, 2015. "Analysis of Kinematic Waves Arising in Diverging Traffic Flow Models," Transportation Science, INFORMS, vol. 49(1), pages 28-45, February.
    12. Jin, Wen-Long & Zhang, H. Michael, 2013. "An instantaneous kinematic wave theory of diverging traffic," Transportation Research Part B: Methodological, Elsevier, vol. 48(C), pages 1-16.
    13. Munoz, Juan Carlos & Daganzo, Carlos, 2000. "Experimental Characterization of Multi-Lane Freeway Traffic Upstream of an Off-Ramp Bottleneck," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt8635j1df, Institute of Transportation Studies, UC Berkeley.
    14. Zheng, Zuduo, 2014. "Recent developments and research needs in modeling lane changing," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 16-32.
    15. Horowitz, Roberto & May, Adolf & Skabardonis, Alex & Varaiya, Pravin & Zhang, Michael & Gomes, Gabriel & Munoz, Laura & Sun, Xiaotian & Sun, Dengfeng, 2005. "Design, Field Implementation and Evaluation of Adaptive Ramp Metering Algorithms," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt5p06q6k5, Institute of Transportation Studies, UC Berkeley.
    16. Laval, Jorge A. & Daganzo, Carlos F., 2006. "Lane-changing in traffic streams," Transportation Research Part B: Methodological, Elsevier, vol. 40(3), pages 251-264, March.
    17. Jin, Wen-Long, 2012. "The traffic statics problem in a road network," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1360-1373.
    18. Muñoz, Juan Carlos & Daganzo, Carlos F., 2002. "The bottleneck mechanism of a freeway diverge," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(6), pages 483-505, July.
    19. Ule, Aljaz & Boucherie, Richard J., 2003. "On the distribution of calls in a wireless network driven by fluid traffic," European Journal of Operational Research, Elsevier, vol. 147(1), pages 146-155, May.
    20. Xing, Tao & Zhou, Xuesong & Taylor, Jeffrey, 2013. "Designing heterogeneous sensor networks for estimating and predicting path travel time dynamics: An information-theoretic modeling approach," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 66-90.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:33:y:1999:i:5:p:337-350. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.