IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v139y2020icp38-63.html
   My bibliography  Save this article

Towards delivery-as-a-service: Effective neighborhood search strategies for integrated delivery optimization of E-commerce and static O2O parcels

Author

Listed:
  • Wang, Yuan
  • Lei, Linfei
  • Zhang, Dongxiang
  • Lee, Loo Hay

Abstract

In this paper, we investigate a new variant of last-mile delivery that integrates the scheduling of static E-commerce parcels and Online-to-Offline(O2O) parcels. The O2O parcels, such as flowers and cakes, are often delivered intra city with a time window constraint. It is driven by the concept of delivery-as-a-service, which targets at building consolidated infrastructure and using the same fleet of vehicles to provide standardized delivery services for different types of merchants. We formulate it as an integration of Multi-Depot Multi-Trip Vehicle Routing Problem (MDMTVRP) and Paired Pickup and Delivery Problem with Time Window (PPDPTW). To solve the mixed problem of MDMTVRP and PPDPTW, we present its Mixed-Integer Programming (MIP) model to obtain the optimal solution for small-scale instances. To solve large-scale problems, we propose a hybrid neighborhood search strategy to effectively combine the merits of ALNS and tabu search. We also present a two-level pruning strategy that can significantly accelerate the local search procedure. We conduct extensive numeric experiments on multiple datasets, and results showed that our hybrid approach achieved near-optimal performance and established clear superiority over ALNS and tabu search.

Suggested Citation

  • Wang, Yuan & Lei, Linfei & Zhang, Dongxiang & Lee, Loo Hay, 2020. "Towards delivery-as-a-service: Effective neighborhood search strategies for integrated delivery optimization of E-commerce and static O2O parcels," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 38-63.
  • Handle: RePEc:eee:transb:v:139:y:2020:i:c:p:38-63
    DOI: 10.1016/j.trb.2020.06.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261520303428
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2020.06.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andreas Stenger & Daniele Vigo & Steffen Enz & Michael Schwind, 2013. "An Adaptive Variable Neighborhood Search Algorithm for a Vehicle Routing Problem Arising in Small Package Shipping," Transportation Science, INFORMS, vol. 47(1), pages 64-80, February.
    2. Naccache, Salma & Côté, Jean-François & Coelho, Leandro C., 2018. "The multi-pickup and delivery problem with time windows," European Journal of Operational Research, Elsevier, vol. 269(1), pages 353-362.
    3. Éric Taillard & Philippe Badeau & Michel Gendreau & François Guertin & Jean-Yves Potvin, 1997. "A Tabu Search Heuristic for the Vehicle Routing Problem with Soft Time Windows," Transportation Science, INFORMS, vol. 31(2), pages 170-186, May.
    4. Timo Gschwind & Michael Drexl, 2019. "Adaptive Large Neighborhood Search with a Constant-Time Feasibility Test for the Dial-a-Ride Problem," Transportation Science, INFORMS, vol. 53(2), pages 480-491, March.
    5. Janjevic, Milena & Winkenbach, Matthias & Merchán, Daniel, 2019. "Integrating collection-and-delivery points in the strategic design of urban last-mile e-commerce distribution networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 37-67.
    6. Zhang, Yuankai & Sun, Lijun & Hu, Xiangpei & Zhao, Chen, 2019. "Order consolidation for the last-mile split delivery in online retailing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 309-327.
    7. B Yu & Z-Z Yang & J-X Xie, 2011. "A parallel improved ant colony optimization for multi-depot vehicle routing problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 183-188, January.
    8. Masmoudi, Mohamed Amine & Hosny, Manar & Braekers, Kris & Dammak, Abdelaziz, 2016. "Three effective metaheuristics to solve the multi-depot multi-trip heterogeneous dial-a-ride problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 96(C), pages 60-80.
    9. Wang, Yuan & Zhang, Dongxiang & Liu, Qing & Shen, Fumin & Lee, Loo Hay, 2016. "Towards enhancing the last-mile delivery: An effective crowd-tasking model with scalable solutions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 279-293.
    10. Žulj, Ivan & Kramer, Sergej & Schneider, Michael, 2018. "A hybrid of adaptive large neighborhood search and tabu search for the order-batching problem," European Journal of Operational Research, Elsevier, vol. 264(2), pages 653-664.
    11. Markov, Iliya & Varone, Sacha & Bierlaire, Michel, 2016. "Integrating a heterogeneous fixed fleet and a flexible assignment of destination depots in the waste collection VRP with intermediate facilities," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 256-273.
    12. Stefan Ropke & David Pisinger, 2006. "An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 40(4), pages 455-472, November.
    13. Devari, Aashwinikumar & Nikolaev, Alexander G. & He, Qing, 2017. "Crowdsourcing the last mile delivery of online orders by exploiting the social networks of retail store customers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 105-122.
    14. Qi, Mingyao & Lin, Wei-Hua & Li, Nan & Miao, Lixin, 2012. "A spatiotemporal partitioning approach for large-scale vehicle routing problems with time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 248-257.
    15. Stefan Ropke & Jean-François Cordeau, 2009. "Branch and Cut and Price for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 43(3), pages 267-286, August.
    16. Demir, Emrah & Bektaş, Tolga & Laporte, Gilbert, 2012. "An adaptive large neighborhood search heuristic for the Pollution-Routing Problem," European Journal of Operational Research, Elsevier, vol. 223(2), pages 346-359.
    17. Ghilas, Veaceslav & Demir, Emrah & Woensel, Tom Van, 2016. "A scenario-based planning for the pickup and delivery problem with time windows, scheduled lines and stochastic demands," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 34-51.
    18. Absalom E Ezugwu & Francis Akutsah & Micheal O Olusanya & Aderemi O Adewumi, 2018. "Enhanced intelligent water drops algorithm for multi-depot vehicle routing problem," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-32, March.
    19. Braekers, Kris & Caris, An & Janssens, Gerrit K., 2014. "Exact and meta-heuristic approach for a general heterogeneous dial-a-ride problem with multiple depots," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 166-186.
    20. Mahmoudi, Monirehalsadat & Zhou, Xuesong, 2016. "Finding optimal solutions for vehicle routing problem with pickup and delivery services with time windows: A dynamic programming approach based on state–space–time network representations," Transportation Research Part B: Methodological, Elsevier, vol. 89(C), pages 19-42.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wan Qin & Peng Yuhan & Yu Cuiting & Huang Yu & Liu Danping, 2023. "Optimal Strategies of the Online-to-Offline Instant Delivery Service of Grocery Retailers," SAGE Open, , vol. 13(4), pages 21582440231, December.
    2. Lin, Yun Hui & Wang, Yuan & He, Dongdong & Lee, Loo Hay, 2020. "Last-mile delivery: Optimal locker location under multinomial logit choice model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    3. Yinying He & Csaba Csiszár, 2021. "Model for Crowdsourced Parcel Delivery Embedded into Mobility as a Service Based on Autonomous Electric Vehicles," Energies, MDPI, vol. 14(11), pages 1-24, May.
    4. Wu, Yinghui & Yang, Hai & Zhao, Shuo & Shang, Pan, 2021. "Mitigating unfairness in urban rail transit operation: A mixed-integer linear programming approach," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 418-442.
    5. Tomáš Settey & Jozef Gnap & Dominika Beňová & Michal Pavličko & Oľga Blažeková, 2021. "The Growth of E-Commerce Due to COVID-19 and the Need for Urban Logistics Centers Using Electric Vehicles: Bratislava Case Study," Sustainability, MDPI, vol. 13(10), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schulz, Arne & Pfeiffer, Christian, 2024. "Using fixed paths to improve branch-and-cut algorithms for precedence-constrained routing problems," European Journal of Operational Research, Elsevier, vol. 312(2), pages 456-472.
    2. Masmoudi, Mohamed Amine & Hosny, Manar & Demir, Emrah & Genikomsakis, Konstantinos N. & Cheikhrouhou, Naoufel, 2018. "The dial-a-ride problem with electric vehicles and battery swapping stations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 392-420.
    3. Michael Schneider & Andreas Stenger & Dominik Goeke, 2014. "The Electric Vehicle-Routing Problem with Time Windows and Recharging Stations," Transportation Science, INFORMS, vol. 48(4), pages 500-520, November.
    4. Ho, Sin C. & Szeto, W.Y. & Kuo, Yong-Hong & Leung, Janny M.Y. & Petering, Matthew & Tou, Terence W.H., 2018. "A survey of dial-a-ride problems: Literature review and recent developments," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 395-421.
    5. John Olsson & Daniel Hellström & Henrik Pålsson, 2019. "Framework of Last Mile Logistics Research: A Systematic Review of the Literature," Sustainability, MDPI, vol. 11(24), pages 1-25, December.
    6. Jie Xiong & Biao Chen & Xiangnan Li & Zhengbing He & Yanyan Chen, 2020. "Demand Responsive Service-based Optimization on Flexible Routes and Departure Time of Community Shuttles," Sustainability, MDPI, vol. 12(3), pages 1-20, January.
    7. Turkeš, Renata & Sörensen, Kenneth & Hvattum, Lars Magnus, 2021. "Meta-analysis of metaheuristics: Quantifying the effect of adaptiveness in adaptive large neighborhood search," European Journal of Operational Research, Elsevier, vol. 292(2), pages 423-442.
    8. Molenbruch, Yves & Braekers, Kris & Hirsch, Patrick & Oberscheider, Marco, 2021. "Analyzing the benefits of an integrated mobility system using a matheuristic routing algorithm," European Journal of Operational Research, Elsevier, vol. 290(1), pages 81-98.
    9. Yves Molenbruch & Kris Braekers & An Caris, 2017. "Typology and literature review for dial-a-ride problems," Annals of Operations Research, Springer, vol. 259(1), pages 295-325, December.
    10. Bongiovanni, Claudia & Kaspi, Mor & Cordeau, Jean-François & Geroliminis, Nikolas, 2022. "A machine learning-driven two-phase metaheuristic for autonomous ridesharing operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    11. Mohamed Amine Masmoudi & Manar Hosny & Emrah Demir & Erwin Pesch, 2020. "Hybrid adaptive large neighborhood search algorithm for the mixed fleet heterogeneous dial-a-ride problem," Journal of Heuristics, Springer, vol. 26(1), pages 83-118, February.
    12. Timo Gschwind & Michael Drexl, 2016. "Adaptive Large Neighborhood Search with a Constant-Time Feasibility Test for the Dial-a-Ride Problem," Working Papers 1624, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    13. Molenbruch, Yves & Braekers, Kris & Caris, An, 2017. "Benefits of horizontal cooperation in dial-a-ride services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 107(C), pages 97-119.
    14. Dumez, Dorian & Lehuédé, Fabien & Péton, Olivier, 2021. "A large neighborhood search approach to the vehicle routing problem with delivery options," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 103-132.
    15. Seokgi Lee & Mona Issabakhsh & Hyun Woo Jeon & Seong Wook Hwang & Byung Chung, 2020. "Idle time and capacity control for a single machine scheduling problem with dynamic electricity pricing," Operations Management Research, Springer, vol. 13(3), pages 197-217, December.
    16. Hammami, Farouk & Rekik, Monia & Coelho, Leandro C., 2019. "Exact and heuristic solution approaches for the bid construction problem in transportation procurement auctions with a heterogeneous fleet," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 150-177.
    17. Guo, Jiaqi & Long, Jiancheng & Xu, Xiaoming & Yu, Miao & Yuan, Kai, 2022. "The vehicle routing problem of intercity ride-sharing between two cities," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 113-139.
    18. He, Dongdong & Ceder, Avishai (Avi) & Zhang, Wenyi & Guan, Wei & Qi, Geqi, 2023. "Optimization of a rural bus service integrated with e-commerce deliveries guided by a new sustainable policy in China," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 172(C).
    19. Johnsen, Lennart C. & Meisel, Frank, 2022. "Interrelated trips in the rural dial-a-ride problem with autonomous vehicles," European Journal of Operational Research, Elsevier, vol. 303(1), pages 201-219.
    20. Mahmoudi, Monirehalsadat & Chen, Junhua & Shi, Tie & Zhang, Yongxiang & Zhou, Xuesong, 2019. "A cumulative service state representation for the pickup and delivery problem with transfers," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 351-380.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:139:y:2020:i:c:p:38-63. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.