IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v130y2019icp105-129.html
   My bibliography  Save this article

Blue phase: Optimal network traffic control for legacy and autonomous vehicles

Author

Listed:
  • Rey, David
  • Levin, Michael W.

Abstract

With the forecasted emergence of autonomous vehicles in urban traffic networks, new control policies are needed to leverage their potential for reducing congestion. While several efforts have studied the fully autonomous traffic control problem, there is a lack of models addressing the more imminent transitional stage wherein legacy and autonomous vehicles share the urban infrastructure. We address this gap by introducing a new policy for stochastic network traffic control involving both classes of vehicles. We conjecture that network links will have dedicated lanes for autonomous vehicles which provide access to traffic intersections and combine traditional green signal phases with autonomous vehicle-restricted signal phases named blue phases. We propose a new pressure-based, decentralized, hybrid network control policy that activates selected movements at intersections based on the solution of mixed-integer linear programs. We prove that the proposed policy is stable, i.e. maximizes network throughput, under conventional travel demand conditions. We conduct numerical experiments to test the proposed policy under varying proportions of autonomous vehicles. Our experiments reveal that considerable trade-offs exist in terms of vehicle-class travel time based on the level of market penetration of autonomous vehicles. Further, we find that the proposed hybrid network control policy improves on traditional green phase traffic signal control for high levels of congestion, thus helping in quantifying the potential benefits of autonomous vehicles in urban networks.

Suggested Citation

  • Rey, David & Levin, Michael W., 2019. "Blue phase: Optimal network traffic control for legacy and autonomous vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 130(C), pages 105-129.
  • Handle: RePEc:eee:transb:v:130:y:2019:i:c:p:105-129
    DOI: 10.1016/j.trb.2019.11.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261518306271
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2019.11.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dion, François & Hellinga, Bruce, 2002. "A rule-based real-time traffic responsive signal control system with transit priority: application to an isolated intersection," Transportation Research Part B: Methodological, Elsevier, vol. 36(4), pages 325-343, May.
    2. Nathan H. Gartner & John D. C. Little & Henry Gabbay, 1975. "Optimization of Traffic Signal Settings by Mixed-Integer Linear Programming," Transportation Science, INFORMS, vol. 9(4), pages 321-343, November.
    3. Li, Xiang & Sun, Jian-Qiao, 2016. "Effects of turning and through lane sharing on traffic performance at intersections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 622-640.
    4. Le, Tung & Vu, Hai L. & Walton, Neil & Hoogendoorn, Serge P. & Kovács, Péter & Queija, Rudesindo N., 2017. "Utility optimization framework for a distributed traffic control of urban road networks," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 539-558.
    5. Nathan H. Gartner & John D. C. Little & Henry Gabbay, 1975. "Optimization of Traffic Signal Settings by Mixed-Integer Linear Programming," Transportation Science, INFORMS, vol. 9(4), pages 344-363, November.
    6. Yang, Hai & Yagar, Sam, 1995. "Traffic assignment and signal control in saturated road networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 29(2), pages 125-139, March.
    7. Tampère, Chris M.J. & Corthout, Ruben & Cattrysse, Dirk & Immers, Lambertus H., 2011. "A generic class of first order node models for dynamic macroscopic simulation of traffic flows," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 289-309, January.
    8. Levin, Michael W. & Boyles, Stephen D. & Patel, Rahul, 2016. "Paradoxes of reservation-based intersection controls in traffic networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 90(C), pages 14-25.
    9. Smith, M. J., 1979. "Traffic control and route-choice; a simple example," Transportation Research Part B: Methodological, Elsevier, vol. 13(4), pages 289-294, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Tongfei & Cao, Yaning & Xu, Min & Sun, Huijun, 2023. "Optimal intersection design and signal setting in a transportation network with mixed HVs and CAVs," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    2. Wang, Hua & Meng, Qiang & Chen, Shukai & Zhang, Xiaoning, 2021. "Competitive and cooperative behaviour analysis of connected and autonomous vehicles across unsignalised intersections: A game-theoretic approach," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 322-346.
    3. Yoo, Sunbin & Kumagai, Junya & Kawabata, Yuta & Keeley, Alexander & Managi, Shunsuke, 2021. "Willingness to Buy and/or Pay Disparity: Evidence from Fully Autonomous Vehicles," MPRA Paper 108882, University Library of Munich, Germany.
    4. Rey, David & Levin, Michael W. & Dixit, Vinayak V., 2021. "Online incentive-compatible mechanisms for traffic intersection auctions," European Journal of Operational Research, Elsevier, vol. 293(1), pages 229-247.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ennio Cascetta & Mariano Gallo & Bruno Montella, 2006. "Models and algorithms for the optimization of signal settings on urban networks with stochastic assignment models," Annals of Operations Research, Springer, vol. 144(1), pages 301-328, April.
    2. Bliemer, Michiel C.J. & Raadsen, Mark P.H. & Smits, Erik-Sander & Zhou, Bojian & Bell, Michael G.H., 2014. "Quasi-dynamic traffic assignment with residual point queues incorporating a first order node model," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 363-384.
    3. Pillai, Rekha S. & Rathi*, Ajay K. & L. Cohen, Stephen, 1998. "A restricted branch-and-bound approach for generating maximum bandwidth signal timing plans for traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 32(8), pages 517-529, November.
    4. Castillo González, Rodrigo & Clempner, Julio B. & Poznyak, Alexander S., 2019. "Solving traffic queues at controlled-signalized intersections in continuous-time Markov games," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 166(C), pages 283-297.
    5. Liu, Ronghui & Smith, Mike, 2015. "Route choice and traffic signal control: A study of the stability and instability of a new dynamical model of route choice and traffic signal control," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 123-145.
    6. Coogan, Samuel & Kim, Eric & Gomes, Gabriel & Arcak, Murat & Varaiya, Pravin, 2017. "Offset optimization in signalized traffic networks via semidefinite relaxation," Transportation Research Part B: Methodological, Elsevier, vol. 100(C), pages 82-92.
    7. Le, Tung & Vu, Hai L. & Walton, Neil & Hoogendoorn, Serge P. & Kovács, Péter & Queija, Rudesindo N., 2017. "Utility optimization framework for a distributed traffic control of urban road networks," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 539-558.
    8. Little, John D. C. & Kelson, Mark D. & Gartner, Nathan H., 1981. "MAXBAND : a versatile program for setting signals on arteries and triangular networks," Working papers 1185-81., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    9. Cipriani, Ernesto & Fusco, Gaetano, 2004. "Combined signal setting design and traffic assignment problem," European Journal of Operational Research, Elsevier, vol. 155(3), pages 569-583, June.
    10. Sadek, Bassel & Doig Godier, Jean & Cassidy, Michael J & Daganzo, Carlos F, 2022. "Traffic signal plans to decongest street grids," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 195-208.
    11. Yu, Hao & Ma, Rui & Zhang, H. Michael, 2018. "Optimal traffic signal control under dynamic user equilibrium and link constraints in a general network," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 302-325.
    12. Smith, M.J. & Liu, R. & Mounce, R., 2015. "Traffic control and route choice: Capacity maximisation and stability," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 863-885.
    13. Zhou, Xuesong, 2017. "Recasting and optimizing intersection automation as a connected-and-automated-vehicle (CAV) scheduling problem: A sequential branch-and-bound search approach in phase-time-traffic hypernetworkAuthor-N," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 479-506.
    14. Clegg, Janet & Smith, Mike & Xiang, Yanling & Yarrow, Robert, 2001. "Bilevel programming applied to optimising urban transportation," Transportation Research Part B: Methodological, Elsevier, vol. 35(1), pages 41-70, January.
    15. Li, Pengfei & Mirchandani, Pitu & Zhou, Xuesong, 2015. "Solving simultaneous route guidance and traffic signal optimization problem using space-phase-time hypernetwork," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 103-130.
    16. Yao, Zhihong & Zhao, Bin & Qin, Lingqiao & Jiang, Yangsheng & Ran, Bin & Peng, Bo, 2020. "An efficient heterogeneous platoon dispersion model for real-time traffic signal control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    17. Hoang, Nam H. & Vu, Hai L. & Lo, Hong K., 2018. "An informed user equilibrium dynamic traffic assignment problem in a multiple origin-destination stochastic network," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 207-230.
    18. Vinayak Dixit & Divya Jayakumar Nair & Sai Chand & Michael W Levin, 2020. "A simple crowdsourced delay-based traffic signal control," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-12, April.
    19. Yan, Qinglong & Sun, Zhe & Gan, Qijian & Jin, Wen-Long, 2018. "Automatic identification of near-stationary traffic states based on the PELT changepoint detection," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 39-54.
    20. Yu, Chunhui & Ma, Wanjing & Yang, Xiaoguang, 2020. "A time-slot based signal scheme model for fixed-time control at isolated intersections," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 176-192.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:130:y:2019:i:c:p:105-129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.