IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v123y2019icp374-385.html
   My bibliography  Save this article

Mode choice with latent availability and consideration: Theory and a case study

Author

Listed:
  • Calastri, Chiara
  • Hess, Stephane
  • Choudhury, Charisma
  • Daly, Andrew
  • Gabrielli, Lorenzo

Abstract

Over the last two decades, passively collected data sources, like Global Positioning System (GPS) traces from data loggers and smartphones, have emerged as a very promising source for understanding travel behaviour. Most choice model applications in this context have made use of data collected specifically for choice modelling, which often has high costs associated with it. On the other hand, many other data sources exist in which respondents’ movements are tracked. These data sources have thus far been underexploited for choice modelling. Indeed, although some information on the chosen mode and basic socio-demographic data is collected in such surveys, they (as well as in fact also some purpose collected surveys) lack information on mode availability and consideration. This paper addresses the data challenges by estimating a mode choice model with probabilistic availability and consideration, using a secondary dataset consisting of ‘annotated’ GPS traces. Stated mode availability by part of the sample enabled the specification of an availability component, while the panel nature of the data and explicit incorporation of spatial and environmental factors enabled estimation of latent trip specific consideration sets. The research thus addresses an important behavioural issue (explicit modelling of availability and choice set) in addition to enriching the data for choice modelling purposes. The model produces reasonable results, including meaningful value of travel time (VTT) measures. Our findings further suggest that a better understanding of mode choices can be obtained by looking jointly at availability, consideration and choice.

Suggested Citation

  • Calastri, Chiara & Hess, Stephane & Choudhury, Charisma & Daly, Andrew & Gabrielli, Lorenzo, 2019. "Mode choice with latent availability and consideration: Theory and a case study," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 374-385.
  • Handle: RePEc:eee:transb:v:123:y:2019:i:c:p:374-385
    DOI: 10.1016/j.trb.2017.06.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261517305428
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2017.06.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jariyasunant, Jerald & Carrel, Andre & Ekambaram, Venkatesan & Gaker, DJ & Kote, Thejovardhana & Sengupta, Raja & Walker, Joan L., 2011. "The Quantified Traveler: Using personal travel data to promote sustainable transport behavior," University of California Transportation Center, Working Papers qt9jg0p1rj, University of California Transportation Center.
    2. Arthur (Yan) Huang & David Levinson, 2015. "Axis of travel: Modeling non-work destination choice with GPS data," Working Papers 000113, University of Minnesota: Nexus Research Group.
    3. Cervero, R. & Duncan, M., 2003. "Walking, Bicycling, and Urban Landscapes: Evidence from the San Francisco Bay Area," American Journal of Public Health, American Public Health Association, vol. 93(9), pages 1478-1483.
    4. Broach, Joseph & Dill, Jennifer & Gliebe, John, 2012. "Where do cyclists ride? A route choice model developed with revealed preference GPS data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(10), pages 1730-1740.
    5. Cools, Mario & Creemers, Lieve, 2013. "The dual role of weather forecasts on changes in activity-travel behavior," Journal of Transport Geography, Elsevier, vol. 28(C), pages 167-175.
    6. Chen, Cynthia & Gong, Hongmian & Lawson, Catherine & Bialostozky, Evan, 2010. "Evaluating the feasibility of a passive travel survey collection in a complex urban environment: Lessons learned from the New York City case study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(10), pages 830-840, December.
    7. Cervero, Robert & Duncan, Michael, 2003. "Walking, Bicycling, and Urban Landscapes: Evidence from the San Francisco Bay Area," University of California Transportation Center, Working Papers qt6zr1x95m, University of California Transportation Center.
    8. Stephane Hess, 2014. "Latent class structures: taste heterogeneity and beyond," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 14, pages 311-330, Edward Elgar Publishing.
    9. Swait, Joffre, 2001. "Choice set generation within the generalized extreme value family of discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 35(7), pages 643-666, August.
    10. Cantillo, Víctor & Ortúzar, Juan de Dios, 2005. "A semi-compensatory discrete choice model with explicit attribute thresholds of perception," Transportation Research Part B: Methodological, Elsevier, vol. 39(7), pages 641-657, August.
    11. Jariyasunant, Jerald & Carrel, Andre & Ekambaram, Venkatesan & Gaker, DJ & Kote, Thejovardhana & Sengupta, Raja & Walker, Joan L., 2011. "The Quantified Traveler: Using personal travel data to promote sustainable transport behavior," University of California Transportation Center, Working Papers qt678537sx, University of California Transportation Center.
    12. Hess, Stephane & Quddus, Mohammed & Rieser-Schüssler, Nadine & Daly, Andrew, 2015. "Developing advanced route choice models for heavy goods vehicles using GPS data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 77(C), pages 29-44.
    13. Swait, Joffre & Ben-Akiva, Moshe, 1987. "Incorporating random constraints in discrete models of choice set generation," Transportation Research Part B: Methodological, Elsevier, vol. 21(2), pages 91-102, April.
    14. Paul Kelly & Patricia Krenn & Sylvia Titze & Peter Stopher & Charlie Foster, 2013. "Quantifying the Difference Between Self-Reported and Global Positioning Systems-Measured Journey Durations: A Systematic Review," Transport Reviews, Taylor & Francis Journals, vol. 33(4), pages 443-459, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tsoleridis, Panagiotis & Choudhury, Charisma F. & Hess, Stephane, 2023. "Probabilistic choice set formation incorporating activity spaces into the context of mode and destination choice modelling," Journal of Transport Geography, Elsevier, vol. 108(C).
    2. Edenbrandt, Anna Kristina & Lagerkvist, Carl-Johan & Lüken, Malte & Orquin, Jacob L., 2022. "Seen but not considered? Awareness and consideration in choice analysis," Journal of choice modelling, Elsevier, vol. 45(C).
    3. Faber, R.M. & Jonkeren, O. & de Haas, M.C. & Molin, E.J.E. & Kroesen, M., 2022. "Inferring modality styles by revealing mode choice heterogeneity in response to weather conditions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 282-295.
    4. Heike Link & Dennis Gaus & Neil Murray & Maria Fernanda Guajardo Ortega & Flavien Gervois & Frederik von Waldow & Sofia Eigner, 2023. "Combining GPS Tracking and Surveys for a Mode Choice Model: Processing Data from a Quasi-Natural Experiment in Germany," Discussion Papers of DIW Berlin 2047, DIW Berlin, German Institute for Economic Research.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tsoleridis, Panagiotis & Choudhury, Charisma F. & Hess, Stephane, 2022. "Deriving transport appraisal values from emerging revealed preference data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 225-245.
    2. Lin, Jen-Jia & Wei, Yi-Hsuan, 2018. "Assessing area-wide bikeability: A grey analytic network process," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 381-396.
    3. Lindsey Conrow & Siân Mooney & Elizabeth A Wentz, 2021. "The association between residential housing prices, bicycle infrastructure and ridership volumes," Urban Studies, Urban Studies Journal Limited, vol. 58(4), pages 787-808, March.
    4. Swait, Joffre, 2009. "Choice models based on mixed discrete/continuous PDFs," Transportation Research Part B: Methodological, Elsevier, vol. 43(7), pages 766-783, August.
    5. Ji, Shujuan & Wang, Xin & Lyu, Tao & Liu, Xiaojie & Wang, Yuanqing & Heinen, Eva & Sun, Zhenwei, 2022. "Understanding cycling distance according to the prediction of the XGBoost and the interpretation of SHAP: A non-linear and interaction effect analysis," Journal of Transport Geography, Elsevier, vol. 103(C).
    6. Milakis, Dimitris & Athanasopoulos, Konstantinos, 2014. "What about people in cycle network planning? applying participative multicriteria GIS analysis in the case of the Athens metropolitan cycle network," Journal of Transport Geography, Elsevier, vol. 35(C), pages 120-129.
    7. Leite Mariante, Gabriel & Ma, Tai-Yu & Van Acker, Véronique, 2018. "Modeling discretionary activity location choice using detour factors and sampling of alternatives for mixed logit models," Journal of Transport Geography, Elsevier, vol. 72(C), pages 151-165.
    8. Ma, Liang & Ettema, Dick & Ye, Runing, 2021. "Determinants of bicycling for transportation in disadvantaged neighbourhoods: Evidence from Xi’an, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 103-117.
    9. Gen Hayauchi & Ryo Ariyoshi & Takayuki Morikawa & Fumihiko Nakamura, 2023. "Assessment of the Improvement of Public Transport in Hillside Cities Considering the Impact of Topography on Walking Choices," Sustainability, MDPI, vol. 15(12), pages 1-12, June.
    10. Chorus, Caspar G. & Timmermans, Harry J.P., 2009. "Measuring user benefits of changes in the transport system when traveler awareness is limited," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(5), pages 536-547, June.
    11. Zolfaghari, Alireza & Sivakumar, Aruna & Polak, John, 2013. "Simplified probabilistic choice set formation models in a residential location choice context," Journal of choice modelling, Elsevier, vol. 9(C), pages 3-13.
    12. Cervero, Robert & Denman, Steve & Jin, Ying, 2019. "Network design, built and natural environments, and bicycle commuting: Evidence from British cities and towns," Transport Policy, Elsevier, vol. 74(C), pages 153-164.
    13. Weber, Johann, 2017. "Policy entrepreneurs and opportunities: Establishing a model of policy change through bicycle infrastructure at the municipal level," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 252-263.
    14. Kaplan, Sigal & Shiftan, Yoram & Bekhor, Shlomo, 2012. "Development and estimation of a semi-compensatory model with a flexible error structure," Transportation Research Part B: Methodological, Elsevier, vol. 46(2), pages 291-304.
    15. Dandan Xu & Yang Bian & Shinan Shu, 2020. "Research on the Psychological Model of Free-floating Bike-Sharing Using Behavior: A Case Study of Beijing," Sustainability, MDPI, vol. 12(7), pages 1-18, April.
    16. Sigal Kaplan & Yoram Shiftan & Shlomo Bekhor, 2011. "A Semi-Compensatory Residential Choice Model With Flexible Error Structure," ERSA conference papers ersa10p65, European Regional Science Association.
    17. Umer Mansoor & Mohammad Tamim Kashifi & Fazal Rehman Safi & Syed Masiur Rahman, 2022. "A review of factors and benefits of non-motorized transport: a way forward for developing countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 1560-1582, February.
    18. Wang, Haizhong & Palm, Matthew & Chen, Chen & Vogt, Rachel & Wang, Yiyi, 2016. "Does bicycle network level of traffic stress (LTS) explain bicycle travel behavior? Mixed results from an Oregon case study," Journal of Transport Geography, Elsevier, vol. 57(C), pages 8-18.
    19. Regine Gerike & Caroline Koszowski & Bettina Schröter & Ralph Buehler & Paul Schepers & Johannes Weber & Rico Wittwer & Peter Jones, 2021. "Built Environment Determinants of Pedestrian Activities and Their Consideration in Urban Street Design," Sustainability, MDPI, vol. 13(16), pages 1-21, August.
    20. Chorus, Caspar G., 2014. "Benefit of adding an alternative to one׳s choice set: A regret minimization perspective," Journal of choice modelling, Elsevier, vol. 13(C), pages 49-59.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:123:y:2019:i:c:p:374-385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.